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SUMMARY

Most design of experiments assumes predetermined design regions. Design

regions with uncertainty are of interest in the first chapter. When a design region is

restricted by inequality engineering constraints like solubility constraints (Chrastil,

1982), there might exist uncertainty in a design region. This uncertainty comes from

the fact that engineering models are based on simplified assumptions. If a design

region has uncertainty on its boundary, any data collection plan (e.g., optimal de-

signs) that depends on the location of the design region boundary is not appropriate.

Optimal designs tend to place many design points at the extreme limits of bound-

ary regions. However, the boundary of the region is not precisely known in many

engineering experiments (e.g., mechanical and chemical experiments). This chapter

proposes optimal designs under a two-part model to handle the uncertainty in the

design region. In particular, the logit model in the two-part model is used to assess

the uncertainty on the boundary of the design region. This chapter derives the in-

formation matrix of the two-part model and constructed optimal designs. Through

several examples, we show how the two-part models explain uncertainty in design

regions and can be used for inequality engineering constraint estimation.

The second chapter proposes an efficient and effective multi-layer data collec-

tion scheme (Layers of Experiments) for building accurate statistical models to meet

tight tolerance requirement commonly encountered in nano-fabrication. In nano-

fabrication processes, due to high material costs and processing time for physical

experiments, number of experimental runs is very limited. However, the limited re-

sources make it difficult to estimate statistical models that are required to be accurate

xii



enough to meet a tight tolerance requirement. To overcome these difficulties, “Layers-

of-Experiments” (LOE) obtain sub-regions of interest (layer) where the process op-

timum is expected to lie and collect more data in the sub-regions with concentrated

focus. An evaluation metric is developed to measure the performance of statisti-

cal models for nano-fabrication quality prediction and the metric is used to decide

whether further layers are needed. This chapter also discusses appropriate types of

designs for each layer, e.g. space-filling designs or optimal designs.

The third chapter contributes a new design criterion combining model-based opti-

mal design and model-free space-filling design in a constraint and compound manner.

Optimal design criterion is for precise statistical inference, while the space-filling de-

sign criterion is for exploration over the design space. The weights between the two

criteria in the combined design is controlled by an adaptive parameter (κ) depending

on the available information provided for a specific application (see chapter 4 for more

examples). The proposed design is useful when the fitted statistical model is required

to have both characteristics: accuracy in statistical inference and design space explo-

ration. We showed that combined designs have properties between optimal designs

and space-filling designs and they are robust against model misspecification. More-

over, combined designs perform better than space-filling designs or optimal designs

where partial information about underlying model is available.

The fourth chapter proposes a method to determine the adaptive parameter (κ)

sequentially in the layers of experiments. The parameter reflects the uncertainty of

each layer, e.g., less uncertainty on the design space, more weights on model-based

optimal criteria. This chapter also develops methods to improve model quality by

combining information from various layers and from engineering models. Combined

designs are modified to improve its efficiency by incorporate collected field data from

several layers of experiments. Updated engineering models are used to build more

accurate statistical models.
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CHAPTER I

INTRODUCTION

1.1 Model-free Design Criteria

Design of experiments is a method used to plan experiments to gain the most infor-

mation possible from the experiments.

1.1.1 Geometrical Criteria

The idea of distance-based designs was first introduced by Johnson, Moore, and

Ylvisaker (1990). These designs are selected based on how spread out the design

points are according to a distance measure or metric. Let τ(·, ·) be a distance measure.

For example, a commonly used distance measure, the pth order distance between two

points x1, x2 is given by

τ(x1,x2) =

[
d∑

j=1

|x1j − x2j|p
]1/p

, where p ≥ 1.

The rectangular and Euclidean distances can be obtained as special cases of the pth

order distance, by setting p = 1 and p = 2, respectively.

LetD denote an arbitrary design consisting of n distinct input sites {x1, x2, . . . , xn},

and X be the collection of all possible points in the experimental region. Then,

ξ ⊂ X .

The maximin criterion tries to spread out the points in X so that the minimum

distance among the design points is maximized. Thus, the maximin design (ξMm) can

be defined as

min
xi,xj∈ξMm

τp(xi, xj) = max
ξ

min
xi,xj∈ξ

τp(xi, xj).

In contrast, the minimax criterion tries to spread out the points in X so that the

maximum distance from any point x ∈ X to the design is minimized. A design ξm
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is said to be a minimax distance design if

min
ξ

max
x∈X

τp(x, ξ) = max
x∈X

τp(x, ξm).

Minimax distance designs ensure that every point in the experimental region is close

to some point in the design. See Koehler and Owen (1996) for an interesting way to

understand the concept behind maximin and minimax designs.

Other distance-based designs have been suggested that attempt to select design

points such that the ‘average of some function of the distances between the points is

minimized; see Santner et al. (2003).

1.1.2 Latin Hypercube Design

Latin hypercube sampling is an extension of the idea of stratified random sampling,

in that Latin hypercube sampling ensures that all portions of the distribution of each

input variable are represented in the sample. Designs generated by Latin hypercube

sampling are called Latin hypercube designs. It is worth noting that Latin hypercube

designs were first proposed by McKay, Beckman, and Conover (1979) for the purpose

of numerical integration.

Let us consider the simple case of obtaining a design consisting of n points in a

[0, 1]2 experimental region. First, each input dimension is divided into n partitions,

that is, [0, 1
n
, 2
n
, . . . , n−1

n
, 1], such that the experimental region is divided into a grid

of n2 cells, that is, [0, 1
n
, 2
n
, . . . , n−1

n
, 1] × [0, 1

n
, 2
n
, . . . , n−1

n
, 1]. Next, n cells are chosen

from this grid of n2 cells, such that each row and each column is represented by one

cell only. This ensures that there is no replication, and that points are marginally

spread (quite) evenly over the values of each input variable.

2



Figure 1: Two Latin hypercube designs on a 2-dimensional experimental region,

n = 10

As can be seen in Figure 1, Latin hypercube designs are not unique, and there is

a possibility that we might end up with a design that has all the design points lying

along the diagonal; Figure 2 depicts such a design this design is not space-filling.

Figure 2: A Latin hypercube designs on a 2-dimensional experimental region, n = 10

Let us take a look at the details of constructing a Latin hypercube design consisting

of n points, in a more general setting. Assume that we have d input variables, and
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Gj(.), j = 1, . . . , d is the marginal distribution of the jth input variable, Xj . Partition

each axis into n segments, each with probability 1/n, under Gj(.). The division points

for jth axis are then,

G−1
j

(
1

n

)
, G−1

j

(
2

n

)
, . . . , G−1

j

(
n− 1

n

)
.

Let, Π = (Πij), i = 1, . . . , n, and j = 1, . . . , d be an n× d matrix whose columns are

d different randomly chosen permutations of {1, 2, . . . , n}. Then the Latin hypercube

design is given by

Xij = G−1
j

(
1

n
(Πij − 1 + Uij)

)
,

where Uij , i = 1, . . . , n, and j = 1, . . . , d are independently and identically distributed

U(0, 1) random variables. Thus, the ith row of Π determines which cell the ith ob-

servation Xi, i = 1, . . . , n should be made in, and the corresponding uniform deviates

Uij determine the location of the ith observation in the chosen cell. Sometimes, Uij

can be set 0.5, for i = 1, . . . , n, and j = 1, . . . , d. Then,

Xij = G−1
j

(
1

n
(Πij − 1 + 0.5)

)
.

(a) Uij ∼ U(0, 1) (b) Uij = 0.5

Figure 3: Two Latin hypercube designs on a 2-dimensional experimental region,

n = 10: (a) uses Uij ∼ U(0, 1) and (b) uses Uij = 0.5
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Figure 3 shows two Latin hypercube designs that use the same Π but the one on

the left uses Uij ∼ U(0, 1) and the one on the right uses Uij = 0.5, for i = 1, . . . , n;

j = 1, . . . , d.

1.1.3 Other Space-filling Designs

There are many space-filling designs in the numerical integration literature that very

easily lend themselves to designs for computer experiments. Uniform designs, good

lattice points, and nets are examples of such designs. Niederreiter (1992) and Koehler

et al. (1996) provide a thorough discussion of these.

Another type of space-filling design that is popular in numerical integration is

that of Sobol’ sequences. These are easy to generate and can be used to construct

sequential designs for computer experiments. A very useful property of Sobol’ se-

quences is that a longer sequence can be created by merely adding points to a shorter

sequence. This is an advantage over Latin hypercube designs, where the designs have

to be reconstructed if we want to increase the design size and maintain the Latin

hypercube nature of the design. The thesis of Marin (2005) contains a very detailed

discussion of Sobol’ sequences.

1.2 Model-based Design Criteria

1.2.1 Traditional Design of Experiments

When constructing models, especially the structure zone model, an empirical model

mentioned in section 1.5, the experimenters were required to do hundreds of ex-

periments in order to validate their models. When one incorporates a design of

experiment (DOE) approach, it is possible to quantify more characteristics of the

model with fewer experiments, using a statistical approach. DOE is generally used

for empirical models. One runs enough experiments to obtain statistically significant

empirical parameters for a model. Common methods used are 2k factorial approach

(where k is the number of factors or process variables in the experiment) , as well as

5



the fractional factorial DOE [84, 140]. Disadvantages of the fractional factorial are

less precision in the model parameter estimates, and confounding or masking of main

effects with interaction effects. Factorial experiments are commonly used in research

[11, 14, 25, 73].

Response surface modeling (RSM) is a method to predict the local shape of the

response surface of a system [84]. It is used mainly for optimizing system settings and

to make a system more robust. RSM is most useful when the system does not have

a linear response between the high and low levels of a factor, i.e. the center point

result does not equal the average of the results with high and low settings. To this

end there are several approaches to DOE. Most popular is the face-centered central

composite design (CCF). A central composite design is a factorial or fractional facto-

rial experiment with center points and a group of star points to allow for estimation

of nonlinearity. Another design is the Box-Behnken design. Unlike the CCF, this

design preserves rotability but the estimation of points on the corners of the box are

poor. RSM is used in many current research projects for modeling of batch processes

[57, 107].

Another popular experimental design technique is the Taguchi method. The

Taguchi method is best when one is trying to find the most robust operating point

for a process [99]. Again, the focus here is on the result (i.e. a more robust pro-

cess) rather than the knowledge about the process gained from the experiments. This

method has found use in batch process modeling as well [83].

Other experimental design techniques have been used to create a better sampling

scheme. Defining a regular grid on the experimental space and randomly picking

points from that grid is called Latin Hypercube sampling (LHS) [40]. Alternatively,

one can space the grid points irregularly based on spatial variation of the function or

adaptively based on previous samples and an experimental design objective [120]. All

of these sampling methods are designed for better sampling of the entire experimental
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region, whereas here we are interested in designing our experiments for best prediction

at the unknown optimal point of a process.

Work that combines experimental design with mechanistic and empirical models

has been largely limited to studies for speeding up simulation times. Specifically,

the concept of surrogate models has been introduced to replace complex mechanistic

models with simpler empirical models [105, 143].

1.2.2 Alphabetic Optimality Experimental Design

The traditional motivation underlying the theory of optimal design is that experi-

ments should be designed to achieve the most precise statistical inference possible.

Kiefer (1981) stated that research work on optimal design arose in part as a reaction

to earlier research on design, which emphasized attractive combinatoric properties

rather than inferential properties. Design optimality was first considered by Smith

(1918), and early work in the subject was done by Wald (1943), Hotelling (1944), and

Elfving (1952). The major contributions to the area, however, were made by Kiefer

(1958, 1959) and Kiefer and Wolfowitz (1959, 1960), who synthesized and greatly

extended the previous work. Although the ideas of optimal design initially generated

considerable controversy (see, for example, the discussion accompanying the paper by

Kiefer 1959), they have since become well established in the statistical literature. In

some areas, such as the design of block experiments, the use of optimal design theory

is now accepted as a fundamental tool for comparing designs (see Section 9). In other

areas, however, there is still disagreement over the applicability of optimal design

theory (see, for example, the discussion in Section 6 on response surface designs).

Excellent reviews of research work on optimal design have appeared. For readers

interested in the most recent developments in optimal design, we recommend the

reviews by Atkinson (1982), Pazman (1980), and Ash and Hedayat (1978). The

review by St. John and Draper (1975) provides a good introduction to the topic.
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The recent book by Silvey (1980) presents a concise summary of the classical results

in optimal design theory, and the book by Fedorov (1972) is a valuable compendium

of results.

The influence of optimal design has extended to almost all areas of experimental

design, and it will be useful to review some of the most basic definitions and results

because they will be needed in subsequent sections. To apply optimal design theory

in practice requires a criterion for comparing experiments and an algorithm for opti-

mizing the criterion over the set of possible experimental designs. We will define the

most commonly used criteria here but will defer the consideration of algorithms to

Section 4. The classical criteria are derived within the context of linear model theory

in which it is assumed that the experimental data can be represented by the equation

yi = fT (xi)β + εi, (1.2.1)

where yi is the measured response from the ith experimental run, xi is a vector

of predictor variables for the ith run, f is a vector of p functions that model how

the response depends on xi, β is a vector of p unknown parameters, and εi is the

experimental error for the ith run.

A natural way to measure the quality of statistical inference with respect to a

single parameter is in terms of the variance of the parameter estimate. If the errors

are uncorrelated and have constant variance σ2, the variance-covariance matrix of the

least squares estimator β̂ is

var(β̂) = σ2(X′X)−1, (1.2.2)

where X is the n × p matrix whose ith row is fT (xi). We will limit our discussion

here to the case where X has full column rank. Another useful way to measure the

quality of inference is in terms of the variance of the estimated response at x, which,

from Eq. (1.2.1), is given by

σ2(x) = σ2fT (xi)(X
′X)−1f(xi), (1.2.3)
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Both Eq. (1.2.2) and Eq. (1.2.3) depend on the experimental design only through

the p × p matrix (X′X)−1, and suggest that a good experimental design will be one

that makes this matrix small in some sense. Since there is no unique size ordering of

the p × p matrices, various real-valued functionals have been suggested as measures

of “smallness.” The most popular of these optimality criteria are listed below:

1. D-Optimality: A design is said to be D-optimal if it minimizes det(X′X)−1

,where det denotes determinant.

2. A-Optimality: A design is said to be A-optimal if it minimizes tr(X′X)−1, where

tr denotes trace.

3. E-Optimality: A design is said to be E-optimal if it minimizes the maximal

eigenvalue of (X′X)−1.

4. G-Optimality: A design is said to be G-optimal if it minimizes maxσ2(x), where

the maximum is taken over all possible vectors x of predictor variables.

5. I-Optimality: A design is said to be I-optimal if it minimizes
∫
σ2(x)λ(dx),

where λ is a probability measure on the space of predictor variables. This

criterion, which is sometimes called average integrated variance, also belongs to

a more general class of L-optimality criteria discussed by Fedorov (1972).
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CHAPTER II

DOE FOR PASS/FAIL AND LINEAR REGRESSION

WITH INEQUALITY CONSTRAINTS INCLUDING

UNCERTAINTY

2.1 Introduction

The assumption that underlies most research work in experimental design is that the

experiment can be adequately described by an equation of the form:

response = model(x) + error, x ∈ R, (2.1.1)

where the model states the effect of the input variables x on the response variable

and the error describes the general form of departures from the model. The input

variables are restricted in the design region R.

As Eq. (2.1.1) states, generally, uncertainties can be classified into structural

(or model) uncertainty, parameter uncertainty, and stochasticity uncertainty. Many

studies have attempt to solve those uncertainty using appropriate designs. Model

robust designs ([5, 35], and therein) seek designs that will yield reasonable results for

the proposed model structure even though it is known to be inexact. Optimal designs

such asD-,A−optimal designs, obtain designs that will reduce uncertainties in param-

eter estimation ([35]). Error-robust designs concern the implications for experimental

design of inaccurate assumption about the error (see [35] for more detail).

Besides those kinds of uncertainties, we are interested in uncertainty in design

region R. To the best of our knowledge, region uncertainty has not been reported in

the literature. To help understand the concept of region uncertainty, let us explain

different types of design regions.
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Many different types of irregular-shaped experimental region R have been con-

cerned in the experimental designs. Typically, input variable, x , vary between a

minimum and a maximum value so that

xi,min ≤ xi ≤ xi,max (i = 1, . . . , p). (2.1.2)

The values of the upper and lower limits xi,minand xi,max depend upon the range

of the factors thought by the engineers to be interesting. For example, if pressure

is one of the factors, the engineers have knowledge that experimental range will be

bounded by the maximum safe working pressure of the equipment. However, xi,max

may be less than this value if such high pressures are not of interest. If the limits

(Eq.(2.1.2)) apply independently to each of the p factors, the experimental region will

be an p-dimensional cube. For p = 2 this is the square as shown in Figure 4(a).

The cube design region is the most frequently encountered for quantitative vari-

ables. However, the nature of the experiment may sometimes cause more complicated

specification of the factor intervals and of the design region. For example, the region

will be spherical if it is defined by the equation

p∑
i=1

x2i ≤ R2

where the radius of the sphere is R(see Figure 4(b)).

Figure 4(c) shows another example, mixture experiments, in which the response

depends only on the proportions of the components of a mixture and not at all on

the total amount. An important feature of such experiments is that a change in the

level of one of the factors leads to a change in the values of one, some, or all of the

other factors. The constraints

q∑
i=1

xi = 1 xi ≥ 0

imposed on the q mixture components make the design region a (q − 1) dimensional

simplex.
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(a) (b)

(c) (d) (e)

Figure 4: Some design regions of two factors x1 and x2 : (a) square(cubic for p > 2),
(b) circular(spherical), (c) simplex for mixture experiments, (d) restricted to avoid
simultaneous high values of x1 and x2(hard constraints), (e) restricted to avoid simul-
taneous high values of x1 and x2(soft constraints)

The experimental regions may be more irregular than previous examples, because

of the imposition of extra constraints as shown in Figure 4(d). For such restricted

experimental regions, standard designs may not be the best choice. Instead, optimal

designs are appropriate for such situations.

Figure 4(a)-4(d) represent design regions which are assumed by traditional ex-

perimental design approaches such as factorial design, mixture design, and optimal

design and so on. Figure 4(e) introduces a new kind of design region where an uncer-

tain constraint is imposed on design space so that a part or all of the design region

are not known with certainty. We call this type of constraint, a soft constraint, to

distinguish it from usual ones. The soft constraint does not divide inside region and

outside region clearly.

In Section 2, we explain the concept of soft constraints in detail and formulate

research problems. We briefly review two-part models and derive optimal designs

under the two-part model in Section 3. In Section 4 we consider several examples to

verify our approaches. Finally, we conclude this chapter and discuss future work in

Sections 5.
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2.2 Focused Research Problem Formulation

To help understand the concept of soft constraints, Table 1 presents the average

aspect ratio of of ZnO Nanowires recorded in [41]. “no growth” indicates failure

in our discussion. Each run represents different experimental conditions. As Table

1 shows, the failure region is not clearly distinguishable from the success region,

because there exists partially success and partially failure regions like run 2 and 8.

Also, failure occurs more frequently in some design regions than the others. Soft

constraints are defined to explain this kind of uncertain boundary between success

regions and failure regions. This uncertainty is due to some uncontrollable or unknown

noise factors during the growth process.

Table 1: The average aspect ratio of of ZnO Nanowires

run trial 1 trial 2 trial 3
1 17.2 14.7 13.6
2 no growth 6.9 9.9
3 8.3 10.1 17.7
4 18.9 9.6 28.4
5 10.8 14.1 15.0
6 7.8 8.4 11.2
7 14.1 17.9 18.8
8 no growth 9.1 no growth

Here is another example of a soft constraint. A solubility model constraints the

precursor amount. If the precursor amount does not exceed the maximum soluble

amount (S), then all of the platinum precursor can be solubilized in the fluid phase;

otherwise, the experimental setting is not appropriate for running an experiment.

Precursor remaining in the solid phase will be wasted and more importantly will be

detrimental to catalyst activity. The solubility of the precursor in sc-CO2 has been

measured and then modeled using the Chrastil model [6].

ln(S) = k ln(ρ(T, P )) +
a

T + b
(2.2.1)

where S is the maximum soluble amount of precursor, T is the temperature, P is the
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pressure, and ρ is the density of the sc-CO2. k, a, b are the adjustment parameters.

Therefore, the precursor amount should not exceed S and this inequality constraint

restricts the design space of T and P . However, the model (2.2.1) contains uncertainty

due to model bias, parameter estimation, some uncontrollable or unknown noise fac-

tors, and so on. Because of those uncertainty, the soft constraint (2.2.1) is likely to

produce similar results as shown in Table 1.

This chapter proposes optimal designs under a two-part model to handle the

uncertainty in the design region. This approach may provide a solution for resolving

a long-standing issue in optimal design. The use of optimal design theory in response

surface studies has been criticized [4], because the optimal designs tend to place

many design points at the extreme limits of the region. However, the boundary of the

region is not precisely known in many engineering experiments (e.g., mechanical and

chemical experiments). The proposed method uses the logit model in the two-part

model to assess the uncertainty in engineering models. There has been an attempt to

incorporate engineering models into statistical models as constraints [42]. However,

our approach is different in that we applies a mixture model for pass/fail data in nano-

fabrication processes and focus on data collection scheme under uncertainty. Also,

we showed how proposed method can be used to estimate inequality engineering

constraint (unknown).

2.3 Methodology

2.3.1 D-optimal Design under Two-part Model

One considers optimum designs to achieve the most precise statistical inference pos-

sible for an underlying model. We assume that an observation yi(xi) may be written

yi = fT (xi)θ + ϵi, i = 1, 2, . . . , N, (2.3.1)

where the xi’s are elements of a compact design space, X , f is continuous on X , and

the ϵi’s are uncorrelated random variables with mean zero and variance σ2. Exact and
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approximate D-optimal designs maximize the determinant of the information matrix,

M(ξ) =

∫
X

f(x)fT (x)dξ(x). (2.3.2)

Suppose that a soft constraint gs(x) ≤ ε is imposed on the design space X . This

constraint divides the design space into two regions: success region and failure region.

Failure region is the design space where there is no yield in that region. To construct

D-optimal design under the soft constraint is of interest. In order to model the two

regions divided by the soft constraint, we use a two-part model. Two-part model have

appeared in econometric analysis for nearly two decades [26, 30]. However, optimal

design for a two-part model has not been studied much. Han [16] finds D-optimal

designs under a two-part model analytically in a simple setting: one variable having

two design points. We consider more a practical situation: several variables having

multiple design points. Furthermore, we are more interested in the meaning of a

two-part model in the experimental design.

A response variable might be a mixture of two or several random variables. yi can

be recoded as a mixture of two random variables, U and V .

Ui =


1 if yi ̸= 0

0 if yi = 0

and

Vi =


g(yi) if yi ̸= 0

irrelevant if yi = 0,

where g is a monotone increasing function (e.g., log) that will make Vi approximately

Gaussian. This regards a response variable as the result of two processes, one deter-

mining whether the response is zero and the other determining the actual level if it

is non-zero.

The observations from physical experiments, yi are modeled by the two separate

models: one for the logit of P (Ui = 1) and one for the mean conditional response
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E(Vi|Ui = 1). The logit, ηi, can be modeled by

η(xi) = fT1 (xi)θ1, (2.3.3)

where ηi = log P (Ui=1)
1−P (Ui=1)

, xi is a vector of design points for the ith run, f1 is vector of

p functions that model how ηi depends on xi, and θ1 is a vector of p unknown logit

model parameter.

The linear regression model for the continuous response is

Vi = fT2 (xi)θ2 + ϵi,

where xi is a vector of design points for the ith run, f2 is a vector of q functions

that model how the Vi depends on xi, θ2 is a q × 1 vector of linear regression model

parameters that need to be estimated, and ϵi is the experimental error for the ith run

(ϵi ∼ N(0, σ2)).

Proposition 1. The information matrix for a two-part model with logit model, ηi =

fT1 (xi)θ1, and linear regression model, Vi = fT2 (xi)θ2 + ϵi, is

M(ξ,θ1) =

 ∑
i

exp(ηi)
(1+exp(ηi))2

f1(xi)f1(xi)
T 0

0
∑

i
exp(ηi)

1+exp(ηi)
f2(xi)f2(xi)

T

 , (2.3.4)

where ξ is a design {x1,x2, . . .}.

Proof. Appendix

The information matrix of the two-part model(2.3.4) consider model structure of

both logit model and linear regression model. Note that the information matrix (Eq.

(2.3.4)) depends on η, which contains unknown parameters to be estimated. It means

two-part model is a non-linear model which requires initial guess to construct optimal

designs.
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2.3.2 Property Investigation of the Logit Model

The logit model (2.3.3) plays a role to separate success region where P (U = 1) = 1

and failure region where P (U = 1) = 0 through ηi = log P (Ui=1)
1−P (Ui=1)

.

Success region Failure region

Figure 5: The logit model and success & failure regions

As Figure 5 illustrates, design space can be separated by the logit model into three

spaces: {x : η(x) = 0}, {x : η(x) > 0}, and {x : η(x) < 0}. Let us call those three

spaces as follows.

Definition 1. Soft Boundary (SB) is SB = {x : η(x) = 0}.

Definition 2. Success Region (SR) is SR = {x : η(x) > 0}.

Definition 3. Failure Region (FR) is FR = {x : η(x) < 0}.

Note that there are a region near SB, whose experimental results are sometimes

success and sometimes fail. Let us call the region a mixed region and the probability

of success in the mixed region is (0 < P (U = 1) < 1). The mixed region is the

consequence of soft constraints. We attempt to explain the mixed region using logit

models. Here is an important insight on logit models.
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(a) Location: Red: η1 = −10(x − 0), Blue: η2 =

−10(x− 0.5)
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(b) Dispersion: Red: η3 = −3(x − 0), Blue: η1 =

−10(x− 0)

Figure 6: Location and Dispersion of the Logit model

As Figure 6 depicts, the mixed region can be defined by its location and dispersion

and the estimate of logit models provides the location and dispersion information of
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the mixed region.

With respect to the location, SB can be used as the location indicator of the mixed

region, because SB is particularly the region such that P (U = 1) = 0.5 as proved

in Proposition 2. On the SB, the chance to be success is equal to the chance to be

failure and so SB can be used as the location of the mixed region, in other words,

the location of the soft constraint. For example, η1 = −10x and η2 = −10(x − 0.5)

have 0.5 difference in SB as shown in Figure 6(a).

Proposition 2. For xi ∈ SB, P (Ui = 1) = 0.5.

Proof. Since xi ∈ SB,

η(xi) = fT1 (xi)θ1 = log
P (Ui = 1)

1− P (Ui = 1)
= 0,

Thus, P (Ui = 1) = 0.5.

With respect to dispersion, the dispersion of the mixed region can be measured

by the steep of the P (U = 1) line at SB. That is, |η′(xi)| for xi ∈ SB. Larger value

of |η′(xi)| indicates steeper line of P (U = 1) on the points of SB, which means small

dispersion. As shown in Figure 6(b), blue line is steeper than red line at x = 0 and

the steep can be confirmed by |η′(xi)| by

|η′3(1)| < |η′1(1)|.

Then, we state that η3 is more disperse than η1.

Therefore, to estimate θ1 in the logit model is equivalent to find soft constraints.

Once the logit model is estimated by η̂(xi) = fT1 (xi)θ̂1, the location of the mixed

region is SB = {x : η̂(x) = 0} and its dispersion is |η̂′(xi)| for xi ∈ SB. That is, we

can model location and dispersion of a soft constraint through the logit model in a

two-part model.
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2.3.3 Soft Constraint Estimation

By definition, D-optimal design, ξ∗, satisfies

|M(ξ∗,θ1)| = max
ξ

|M(ξ,θ1)|.

Since θ1 is unknown in practice, initial guess of θ1, θ
(0)
1 , is required to find D-optimal

design under a two-part model. Denote the D-optimal design with θ1 = θ
(0)
1 by ξ∗(0).

At design points (ξ∗(0)), we collect the observations from physical experiments y(ξ∗(0))

and recode it into U based on the rule,

U
(0)
i =


1 if y(ξ

∗(0)
i ) ̸= 0

0 if y(ξ
∗(0)
i ) = 0

.

Using (ξ∗(0),U(0)) in the logit model, we can estimate θ1. This sequential experiment

keeps going as follows until sample size reaches the allowed size.

θ
(0)
1 → (ξ∗(0),U(0)) → θ̂

(1)

1 → (ξ∗(1),U(1)) → θ̂
(2)

1 → · · · .

2.4 Illustrative Examples

The purpose of the illustrative examples is to justify the use of optimal designs with

a two-part model when design regions include uncertainty, and to show some of char-

acteristics of the design. Two illustrative examples show optimal designs under the

two-part model and some preliminary results of the impact of the two-part model.

Example 1 demonstrates the result of proposed designs for various design spaces re-

stricted by soft constraints. In Example 2, the proposed method of soft constraint

estimation is evaluated. To construct D-optimal design under a two-part model,

we use modified Fedorov exchange algorithm [8], which is most commonly used in

literature for optimal design construction.
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2.4.1 Example 1

The purpose of Example 1 is to show that how proposed design is different from

the usual D-optimal design. Let us consider two variables, x1 and x2, which define

the design space as [−1, 1] × [−1, 1]. D-optimal design under 2nd order polynomial

regression model with N = 8 is shown in Figure 7. All design points are at the

extreme limits of the region. This design is only valid under the assumption that the

design space is surely defined [−1, 1]× [−1, 1].
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Figure 7: D-optimal design on under 2nd order polynomial model with N = 8. The

number next to design points indicates the number of replications.

As mentioned before, to construct D-optimal design under a two-part model, an

initial guess on the parameter of the logit model part is required. The initial guess

θ
(0)
1 is assumed to be given by engineers. Let us compare two designs corresponding

to two initial guesses,

(1) η = −3(x1 − 1) (2.4.1)

(2) η = −100(x1 − 1). (2.4.2)

Note that both guesses have the same SB at x1 = 1, but the dispersions are different.
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Eq. (2.4.1) is more disperse than Eq. (2.4.2), because the dispersion of Eq. (2.4.1) is

∂
∂x1
η(x)

∣∣
x1=1

= 3, while the dispersion of Eq. (2.4.2) is 100.
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(a) η = −3(x1 − 1)
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(b) η = −100(x1 − 1)

Figure 8: D-optimal designs under a two-part model with different initial guess on

θ1

Figure 8 shows the results of D-optimal designs under a two-part model with

different initial guesses. The points at (−1, 1) and (−1, 1) are same as the D-optimal

design in Figure 7, but the positions of other points are quite different. First, the

proposed designs reflect the existence of soft constraint in the design space. Secondly,

two proposed designs in Figure 8(a) and 8(b) are different depending on the initial

guesses. Since Eq. (2.4.1) requested more dispersion than Eq. (2.4.2), the design in

Figure 8(a) spreads out its design points near SB, x1 = 1, more than design in Figure

8(b).

The proposed method, D-optimal design under a two-part model, works well for

any kind of initial guess other than lines. Engineers may guess more complicated soft

constraints like

(3) η = −10x1 − 5x21 − 5x22. (2.4.3)
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The success region corresponding to Eq (2.4.3) is

{(x1, x2) : 5(x1 + 1)2 + 5x22 < 52},

and Figure 9 shows the D-optimal design based on the initial guess (2.4.3).
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Figure 9: D-optimal design based on the initial guess η = −10x1 − 5x21 − 5x22 with

N = 8

2.4.2 Example 2

In this example, we demonstrate the proposed method of soft constraint estimation.

One of the main advantages of D-optimal design under a two-part model is that the

design is able to find the soft constraint sequentially.

Let us consider two variables, x1 and x2, which are defined in the design space

[−1, 2]× [−1, 1]. Suppose that a true logit model is

η(x1, x2) = 50− 50x1 − 25x2, (2.4.4)

which is unknown. That is, the true parameter of the logit model is

θ∗
1 = (50,−50,−25).

In other words, there is a soft constraint whose SB is {(x1, x2) : 50−50x1−25x2 = 0}

in the design space. Blue dash lines in Figure 10 represent SB from the true logit
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model (2.4.4). For linear regression model part in the two-part model, 2nd order

polynomial regression model is assumed.

Now, we want to construct initial D-optimal design under a two-part model with

six initial sample size. As mentioned before, design construction requires initial guess

of θ1. Initial guess of the logit model part is given by engineers as

θ
(0)
1 = (20,−20, 0)

Figure 10(a) shows the constructed design (ξ∗(0)) using given θ
(0)
1 . Using the true

relationship 2.4.4, we obtain η(ξ∗(0)) and corresponding U (0). Using (ξ∗(0), U (0)) in

the logit model, we can estimate θ1, which is depicted by red line in Figure 10(a).

This sequential experiments keep going as follows until sample size reaches the allowed

size N = 8.

θ
(0)
1 = (20,−20, 0)

↓

θ̂
(1)

1 = (25.34,−25.29,−26.51)

↓

θ̂
(2)

1 = (26.73,−50.00,−50.91)

↓

θ̂
(3)

1 = (49.63,−61.36,−41.51)

As shown in Figure 10, the proposed method finds design points sequentially so

as to estimate the parameter in the logit model. The SB lines corresponding to θ̂1

get close to the true line.
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(b) θ
(2)
1 = (26.73,−50.00,−50.91)
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(c) θ
(3)
1 = (49.63,−61.36,−41.51)

Figure 10: Sequential experiments for soft constraint estimation. Blue dash lines

represent the true line and red solid liens are estimated soft constraints
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2.5 Conclusion

Design of experiments assumes predetermined design regions. Design regions with

uncertainty are of interest in this chapter. If a design region has uncertainty on

its boundary, any data collection plan depends on the location of the design region

boundary is not appropriate, for example, optimal designs. We observed uncertainty

in a design region when a design region is restricted by inequality engineering con-

straints like solubility constraints. This results from the fact that engineering models

based on simplified assumptions are subject to be biased and ignore noise variables,

measurement errors, and so on. Thus, we propose optimal designs under a two-part

model to tackle the uncertainty in the design region. We derived the information

matrix of the two-part model and constructed optimal designs. Through several ex-

amples, we showed how two-part models explain uncertainty in design regions and

can be used for soft constraint estimation.

26



Proof of Proposition 1 The information matrix for a two-part model with logit

model, ηi = fT1 (xi)θ1, and linear regression model, Vi = fT2 (xi)θ2 + ϵi, is

M(ξ,θ1) =

 ∑
d

exp(ηi)
(1+exp(ηi))2

f1(xi)f1(xi)
T 0

0
∑

d
exp(ηi)

1+exp(ηi)
f2(xi)f2(xi)

T

 ,

where ξ is a design {x1,x2, . . .}.

Proof. Let d0 = {i : yi = 0} and d1 = {i : yi ̸= 0}, n0 and n1 be the number of

elements in d0 and d1, respectively, and d = d0 ∪ d1. The likelihood function L for

the two-part model is

L ∝
∏
d1

(
exp(ηi)

1 + exp(ηi)
LVi

)∏
d0

(
1

1 + exp(ηi)

)
,

where

LVi
∝ exp

(
−(V − fT2 (xi)θ2)

2

2

)
comes from the linear regression.

Then, the log-likelihood function, l, is

l ∝
∑
d1

log

(
exp(ηi)

1 + exp(ηi)

)
+
∑
d1

logLVi
−
∑
d0

log(1 + exp(ηi))

∝
∑
d1

ηi +
∑
d1

logLVi
−
∑
d

log(1 + exp(ηi))

To calculate the information matrix,

∂l

∂θ1
=

∂

∂θ1

(∑
d1

ηi −
∑
d

log(1 + exp(ηi))

)

=
∑
d1

f1(xi)−
∑
d

exp(ηi)

1 + exp(ηi)
f1(xi)

∂2l

∂θ1∂θ1
= −

∑
d

f1(xi)
∂

∂θ1

(
exp(ηi)

1 + exp(ηi)

)
= −

∑
d

f1(xi)

(
exp(ηi)

1 + exp(ηi)
− exp(ηi) exp(ηi)

(1 + exp(ηi))2

)
f1(xi)

T

= −
∑
d

(
exp(ηi)

(1 + exp(ηi))2

)
f1(xi)f1(xi)

T
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∂l

∂θ2
=

∂

∂θ2

∑
d1

(
(Vi − f2(xi)

Tθ2)
2

2

)
=

∑
d1

(
Vi − f2(xi)

Tθ2

)
f2(xi)

∂2l

∂θ2∂θ2
= −

∑
d1

f2(xi)f2(xi)
T

Since

∂2l

∂θ1∂θ2
=

∂2l

∂θ2∂θ1
= 0

and

E

[∑
d1

f2(xi)f2(xi)
T

]
= E

[∑
d

f2(xi)f2(xi)
T · I(i ∈ d1)

]
=

∑
d

f2(xi)f2(xi)
T · E [I(i ∈ d1)]

=
∑
d

f2(xi)f2(xi)
T · P (i ∈ d1)

=
∑
d

f2(xi)f2(xi)
T · exp ηi

1 + exp(ηi)
.

M(ξ,θ1) =

 ∑
d

exp(ηi)
(1+exp(ηi))2

f1(xi)f1(xi)
T 0

0
∑

d
exp(ηi)

1+exp(ηi)
f2(xi)f2(xi)

T


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CHAPTER III

LAYERS OF EXPERIMENTS FOR BUILDING

STATISTICAL MODELS

3.1 Introduction

Statistical modeling for nano-fabrication process to achieve consistently good per-

formance has become increasingly important [25]. Although statistical quality con-

trol and engineering-driven statistical analysis of traditional manufacturing processes

have achieved great success in yield and productivity improvement [40, 33, 28], the

nanomanufacturing dealing with nanoparticles in nanometer-scale results in new chal-

lenges for quality control and statistical analysis.

In most existing literature, the synthesis of nanomaterials are lack of theoretical

guidance for achieving high quality and reproducible nanomaterials [9]. Yet, statisti-

cal modeling is required to use a few experiment runs due to high material costs and

processing time for physical experiments in nanomanufacturing [1]. At the same time,

the model is required to meet a tight tolerance requirement so that the model should

achieve high level of prediction accuracy. Unfortunately, these two requirement, few

experiment runs and tight tolerance requirement, conflict with each other.

We overcome theses difficulties by Layers of Experiments. We build a statistical

model on the region of interest and obtain subregion where we predict the optimum

lies. On the smaller region we build a more accurate model and continue the search.

The new process improvement methodology for nanomanufacturing is referred to as

Layers of Experiments. A layer denotes a region of interest and the next layer is the

design regions that one needs to conduct the next batch of experiments to improve

model quality and to access the process optimum.
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Sequential experiments on the smaller design space have been studied by some

researchers. Bernardo et al (1992) [3] proposed multistage experiments, a sequential

strategy for optimizing integrated circuit design in computer experiments manner.

However, this approach is for computer experiments rather than physical experiments.

So, the motivation of multistage experiments is similar to layers of experiments in

that both consider reduced subregions, but strategies for design and modeling are

different. Wissmann and Grover (2009) [39] developed grid algorithm to reduce the

design region of interest using confidence intervals which contain the true optimum

of the model. They attempt to improve model prediction around the optimal points.

The grid algorithm selects one next design point for each iteration using the most

probable model. The most probable model is decided by mean squared error among

many candidate models at each iteration. However, the grid algorithm is lack of

statistical analysis as well as it’s focus is to find optimal condition rather than build

a statistical model with good statistical inference.

This chapter proposes an efficient and effective multi-layer data collection scheme

(Layers of Experiments) for building accurate statistical models to meet tight toler-

ance requirement commonly encountered in nano-fabrication. We developed a method

to decide the location and size of sub-regions (layers) using resampling techniques. An

evaluation metric is introduced to measure the performance of statistical models for

nano-fabrication quality prediction and the metric is used to decide whether further

layers are needed. Moreover, this chapter also discusses appropriate types of designs

for each layer, e.g. space-filling designs or optimal designs.

In Section 2, we formulate the problem and overview the layers of experiments

and then we propose new methodology for the focused problems in Section 3. Results

are presented for illustrative examples in Section 4.
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3.2 Brief Overview of Layer-of-Experiments and Focused
Research Problem Formulation

Briefly, layers of experiments have the following six steps. Step 1) Postulate a ten-

tative statistical model. Step 2) Plan an experiment and collect the data. Step 3)

Use the data to fit the models. Step 4) Check the accuracy of prediction. Step 5) If

the model are insufficiently accurate, choose a subregion for the next experiment and

return to step 1. Step 6) When the models are sufficiently accurate, optimize the ob-

jective (loss, yield, etc) using the fitted model in place of the performance functions.

Figure 11 illustrates each procedure.

Figure 11: Flowchart for Layers of Experiments

In this chapter, based on the flowchart, we develop methodologies for each steps

to solve our own problem for nano-fabrication process: building accurate statistical

models to meet tight tolerance requirement with limited run sizes.

The key part of these approaches is step 5 that choose a subregion for the next ex-

periment, which is also main difference from sequential experiments. Focused research
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problems in this chapter are shown in Figure 12.

Figure 12: Focused research problems

First, we develop an evaluation metric to check whether estimated statistical

model meets tolerance requirement near the process optimum. If the model does

not meet the requirement, we choose a subregion for further experiments. Second

focused problem is to decide the subregion (window) for the next experiment. To

maximize efficiency, next experiments should be carried out in the refined subregion.

Refining input design space requires decision procedures whether a certain region is

important with respect to the purpose of experiment or not. There exists the risk

of wrong decision that may cause severe inefficiency. Thus, the location and size of

subregions are very important.

3.3 Methodology

3.3.1 Uncertainty Measurement (Evaluation Metric)

Researchers often categorize uncertainty in experiments into three components: struc-

tural, parameter, and stochasticity [34]. Structural uncertainty refers to uncertainty

due to lack of knowledge about the correct model. Parameter uncertainty is associ-

ated with the uncertainty introduced by having to use values of model parameters

that are not known with certainty. Finally stochasticity occurs when parameters

or other quantities are not fixed but may vary. Stochasticity is generally viewed

as uncertainty that is not reducible, while structural and parameter uncertainty are
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viewed as reducible (at least in principle) as more information is gathered. For ex-

ample, in multiple regression analysis structural uncertainty is associated with model

misspecification. Model evaluation assumes a certain general structure (e.g. multiple

linear) and the model is built through adding terms which are significant or which

aid in prediction. Parameter uncertainty is typically discussed as a problem of esti-

mation. Stochasticity is commonly dealt with as a measurement problem, under the

assumption of an additive error.

The problem of structural uncertainty has been focused less than parameter and

stochastic uncertainty. One of the most common uncertainty measurement in sta-

tistical modeling is confidence interval. However, it only measure parameter and

stochastic uncertainty, in other words, precision rather than accuracy (see Figure 13).

However, once a model misspecified, model accuracy could be very poor due to struc-

tural uncertainty from model misspecification. Hence, we propose a new uncertainty

measurement, which consider structural, parameter, and stochasticity uncertainty.

Figure 13: The concept of accuracy and precision (figure from Wikipedia)

We assume that an observation yi(xi) may be written

yi = fT (xi)θ + εi, i = 1, 2, . . . , N, (3.3.1)

where the xi’s are elements of a compact design space, X , f is continuous on X , and

the εi’s are uncorrelated random variables with mean zero and variance σ2. Letting
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fT (xi) denote the (p× 1) ith row of a matrix X, Eq. (3.3.1) may be rewritten

y = Xθ + e.

The prediction variance σ2(x) of ŷ(x) is

σ2(x) = σ̂2x′(X′X)−1x (3.3.2)

where x′ = [f1, . . . , fp] is a vector of p real valued functions of x based on the model

terms. The model variance σ̂2 used in Eq. (3.3.2) can be estimated as follows.

σ̂2 =

∑N
i=1(y(xi)− ŷ(xi))

2

N − p
.

The model variance σ2(x) is used to calculate the confidence interval on ŷ(x)

CI(x) = ±tα/2,n−p

√
σ2(x), (3.3.3)

where α is the level of confidence desired.

Then, given the target value (T ) (or reference value) of the output yield and

tolerance requirement (d), we want to minimize the fluctuation around T caused by

model uncertainty. This suggests maximum distance of (1− α)% confidence interval

of ŷ from T

P {|ŷ(x)− T | ≥ d} ≤ α, (3.3.4)

where ŷ(x) is a fitted model. Based on Eq. (3.3.4), the evaluation metric is defined

by

L(x) = max {|T − (ŷ(x) + CI(x))| , |T − (ŷ(x)− CI(x))|} , (3.3.5)

Then, we can find x∗ such that

x∗ = argmin
x
L(x)

and let L∗ denotes L(x∗).
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Figure 14 illustrates two different cases of evaluation metric at x∗: 1) when mean

response of fitted model does not reach the target (T ) and 2) when it reaches the

target.

(a) when mean response of fitted model

does not reach the target

(b) when mean response of fitted model

reaches the target

Figure 14: Evaluation Metric L(x) : dash lines are (1− α)% confidence intervals of

ŷ(x)

Formally, the problem is to build a statistical model so that

L∗ ≤ d. (3.3.6)

3.3.2 Subregion Decision for the Next Experiment

Choosing subregion for the next experiment is the key part in layers of experiments.

Let LU be a upper layer and LL be a lower layer (subregion). There are two steps in

subregion decision: 1) find the center of the new subregion (location), and 2) choosing

new limits of the subregion (size).

3.3.2.1 The center of new subregion

One naive way to decide center point(c) is

c = argmin
x

|T − ŷ(x)|.

However, this approach may not appropriate under the lack of knowledge about the

correct model. Also, large stochasticity uncertainty is problematic.
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Thus, we resample residuals using bootstrapping to generate the distribution of

the center point (c). The method proceeds as follows.

1. Fit a model and retain the fitted values ŷi and the residuals ε̂i = yi − ŷi for

i = 1, . . . , n.

2. For each pair, (xi, yi), in which xi is the (possibly multivariate) explanatory

variable, add a randomly resampled residual, ε̂j, to the response variable yi. In

other words create synthetic response variables y∗i = ŷi + ε̂j where j is selected

randomly from the list (1, . . . , n) for every i.

3. Fit candidate models using the fictitious response variables y∗i , and retain the

quantities of interest: the center point (c̃). Suppose that there are several

candidate models Mk, k = 1, . . . ,m, and denote c̃(k) by a center point using

(Mk). A priori estimates P (Mk) are available for each model,

m∑
k=1

P (Mk) = 1.

4. Repeat steps 2 and 3 for a statistically significant number of times (N). Let nk

denote the number of samples from a candidate model P (Mk). Then, for total

N samples,

m∑
k=1

nk = N,

nk ≃ N · P (Mk).

The center of new subregion (c∗) should be the mean of most frequent bin in

histogram of c̃ s.

Suppose that we obtain c̃
(k)
lk
, for l = 1, . . . , nk k = 1, . . . ,m, under m candidate

models and the histogram of c̃
(k)
lk

is shown in Figure 15. The m candidate models

(M1,M2, . . . ,Mm) are different polynomial regression models where

P (M1) + P (M2) + · · ·+ P (Mm) = 1. (3.3.7)
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The center of new subregion (c∗) is the mean of most frequent bin in histogram of

c̃
(k)
lk
.

For example, Figure 15 illustrates the histogram of c̃
(k)
lk

in a design space [−3, 8]

using three candidate models: 2nd, 3rd, 4th order polynomial regression models with

n1 = n2 = n3 = 100. From the histogram, we can compute c∗ = 2.3. With a

few data points, the proposed method finds the center of subregion efficiently. This

approach reflects model uncertainty by considering multiple candidate models and

also measurement error by considering resampling techniques.
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Figure 15: Histogram of c̃
(k)
lk

in the design space [−3, 8], where k = 1, 2, 3 and

n1 = n2 = n3 = 100. c∗ = 2.3

3.3.2.2 The size of new subregion

Next, we should decide the size of the a subregion. If the size of a subregion is

too small, it may miss true optimum, while too large size of subregion may cause

inefficiency. Thus, we want to select the optimal size in some sense, rather than

arbitrary.
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Figure 15 illustrates a histogram of all possible center points in the subregion

using proposed resampling technique. This is an important indicator for subregion

size decision. Given a center point c∗, larger size of a subregion can cover more

possible centers. The probability of success for subregion to include true optimum

with respect to size r is defined by

ψ(r) =
1

N

m∑
k=1

nk∑
l=1

I(c∗ − r ≤ c̃
(k)
lk

≤ c∗ + r). (3.3.8)

Then, we compute the size of new subregion (r∗) by

r∗ = min{r : ψ(r) ≥ 0.95}.
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Figure 16: Plot of r against ψ(r)

For example, Figure 16 illustrates ψ(r) with respect to subregion size r. Note

that ψ(r) is a increasing function of r and 0 ≤ ψ(r) ≤ 1, ψ(r) ≥ 0.95 for r ≥ 1.9.

Therefore, the size of subregion is r∗ = 1.9 and subregion [2.3− 1.9, 2.3 + 1.9] covers

95% possible center points under three candidate models, even though the size of

design space reduced from 11.0 to 3.8.
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3.3.3 Zoom-out procedure

Note that the proposed subregion decision method does not always reduce the size

of design space. That is, upper layer is not necessarily smaller than lower layer in

its size, nor is lower layer a subset of upper layer. If many c̃ locate outside of upper

layer, then we should zoom-out the design space to include possible true optimums.
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3.4 Property Investigation

The goal of the experiment is to build a statistical model such that

L∗ ≤ d.

To achieve this goal, we take three strategies: 1) sample size increasing, 2) optimal

design, and 3) design space zoom-in. First two strategies are commonly used in

physical experiments. Third one is related to layers of experiments, which is the

method we propose. In order to see the impact of those strategies, we decompose L∗

into two part: confidence interval part and mean part.

With respect to the confidence interval, we focus the term inside of square root of

confidence interval (3.3.3),

x′(X′X)−1x. (3.4.1)

Since (X′X)−1 is determined by design points, Eq. (3.4.1) is rewritten using infor-

mation matrix M with a design ξ as follows.

x′M−1(ξ)x. (3.4.2)

Here, x′ = [f1, . . . , fp] is a vector of p real valued functions of a specific x of interest

based on the model terms. For us, x is process optimum that exists somewhere in the

current design space R. However, process optimum is unknown, so we modify Eq.

(3.4.2) to

γ(ξ) =
1

ng

ng∑
l=1

x′
lM

−1(ξ)xl, (3.4.3)

where ξ ∈ R and x1, . . . ,xng represent vectors at ng evenly spaced grid points over

the design space R.

First, it is obvious that γ(ξ) decreases as sample size increases. Second, under

the assumption that the model structure (f1, . . . , fp) is known, we can find a design

that minimize γ(ξ). Among many alphabetical optimal designs, I-optimal design is

the one. As Figure 17 shows, the kind of design used in the experiments affects γ(ξ).
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However, the result in Figure 17 does not mean that the optimal design is always bet-

ter than others because we do not know true underlying model structure in practice.

Optimal designs are known that they are dependent on the model assumption much.

20 40 60 80 100

0.
1

0.
2

0.
3

0.
4

sample size

I−optimal Design
Minimax Design

Figure 17: Performance of γ(ξ) as sample size increases. one dimensional second-

order polynomial model is considered in [0, 1]

Proposition 3 says the third strategy does not help on confidence interval reduc-

tion. That is, same sample size and same design type obtain same value in γ(ξ)

regardless the size of design space R. This implies layers of experiments have impact

more on mean part.

Proposition 3. If a design ξB ∈ RB can be expressed by another design ξA ∈ RA by

ξB = aξA + b for a, b ∈ R, then

γ(ξA) = γ(ξB)

Proof. Since ξ̃B = ξB− (aξ̄A+b) = a(ξA− ξ̄A), it is enough to consider the case b = 0.

Let x′ = [f1, . . . , fp] be a vector of p real valued functions of x based on the model
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terms. For a design ξ = {x1, x2, . . . , xn}, a n× p matrix Xξ is defined by

Xξ =



x′
1

x′
2

...

x′
n


.

For ξA = {x1A, x2A, . . . , xnA} and ξB = {x1B, x2B, . . . , xnB}

XξB =



x′
1B

x′
2B

...

x′
nB


=



x′
1A

x′
2A

...

x′
nA


diag (f1(a), f2(a), · · · , fp(a))

= XξAdiag (f1(a), f2(a), · · · , fp(a))

and

M−1(ξB) = (XξB
′XξB)

−1
= M−1(ξA)diag

(
1

f2
1 (a)

,
1

f 2
2 (a)

, · · · , 1

f 2
p (a)

)
,

because fi(xB) = fi(axA) = fi(a)fi(xB) for i = 1, . . . , p.

Similarly, for l = 1, . . . , 10,

x′
l,B = diag(f0(a), f1(a), f2(a), · · · )x′

l,A.

Therefore,

γ(ξB) =
1

ng

ng∑
l=1

x′
l,BM

−1(ξB)xl,B =
1

ng

ng∑
l=1

x′
l,AM

−1(ξA)xl,A = γ(ξA).

With respect to mean part, it is required to develop very accurate statistical

model ŷ(x). Since the final goal of the experiment is to find optimal conditions whose

response is near the target T , the response from fitted model should be close to the

target. In the process optimization point of view, it is crucial to select design points
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near the optimal regions. If one fails to have design points around optimal regions,

there is no hope to find appropriate optimal conditions. Many space-filling designs

are developed for this purpose, while optimal designs are not appropriate when design

space exploration is needed because optimal designs tend to place many design points

at the extreme limits of the region.

Two school of designs: optimal designs and space-filling designs are both advan-

tages and disadvantages. Then, a question is what kind of design is appropriate for

upper layer and what for lower layer. Space-filling designs are thought to be partic-

ularly appropriate for upper layer, because in general they spread the design points

out nearly evenly or uniformly throughout the region of experimentation. This is

desirable feature if the experimenter does not know the form of the model that is

required, and believes that interesting phenomena are likely to be found in different

regions of the experimental space. On the other hand, optimal designs are more ap-

propriate for lower layer, because upper layer experiments can provide information

about the form of the model and the location of interesting regions. Furthermore,

optimal designs contain replicate runs, which is a desirable feature if the experimenter

want to estimate a model as accurately as possible under large measurement error.

3.5 Layers of Experiments

Layers of Experiments is multi-layer experiment strategy for building a model under

tight tolerance requirement. We now detail the six-step scheme, outlined in previous

section.

Step 1) Postulate a Tentative Statistical Model: Low-order polynomial models are

used.

y(x) =

p∑
i=1

βifi(x) + ε, (3.5.1)

where ε ∼ N(0, σ2).

Whether to include stochastic process terms in the model (3.5.1) can be dealt with
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in individual problems. Model (3.5.1) with stochastic process terms is called the Gaus-

sian process model. The Gaussian process model is essentially a spatial correlation

model, where the correlation of the response between two observations decreases as

the values of the design factors become further apart. However, when design points

are close together this causes ill-conditioning in the data for the Gaussian process

model, much like multicollinearity resulting from predictors that are nearly linearly

dependent in linear regression models. Thus, Gaussian process models may be not

appropriate in the physical experiment considering replication.

Step 2) Plan an Experiment and Collect the Data: In two-layers of experiments,

space-filling designs are used for upper layer and optimal designs are used for lower

layer. Note that optimal designs are constructed under the assumption that the model

structure (f1, . . . , fp) in (3.5.1) is known. The question of sample size is a difficult

one. Criteria for selecting sample sizes are the subject of ongoing research, but here

is one guideline.

Step 3) Use the Data to Fit the Model: We estimate the parameters in the model

(3.5.1) and obtain ŷ(x). Note that we do not consider multiple models, because

optimal designs depend on underlying model. Designs based on multiple candidate

models require more physical experiments, but we cannot afford it due to limited

resources. Instead, multiple candidate models are considered in step 5 to simulate

possible center points.

Step 4) Check the Accuracy of Prediction and Plot the Parameter Effects: To

check whether the fitted model accuracy meet tight tolerance requirement, we com-

pute the evaluation metric. If the evaluation metric is sufficiently accurate for the

required tolerance, go to step 6; otherwise proceed to step 5.

Step 5) Choose a Subregion for the Next Experiment: An optimization routine

can be used to find the center of the new subregion, while the sensitivity analysis can

be used for choosing new limits for the new subregion. We will discuss this step in
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detain in the following section. Then repeat steps 1 to 4, with data drawn from the

new subregion.

Step 6) Optimize the Evaluation Metric: The evaluation metric depends on the

goal of the experiments. We replace y by ŷ and seek to optimize the resulting pre-

dicted evaluation. Then, given the target value of the output yield (T ) and tolerance

requirement (d), we want to minimize the fluctuation around T caused by model

uncertainty. This suggests maximum distance of 95% confidence interval of ŷ from T

To satisfy Eq. (3.3.6), we should construct very accurate statistical model near

T . After finding an estimate of the optimum we do a confirmatory run. If the

confirmatory run is unsatisfactory, we take steps to improve the models. A new stage

with further data might be necessary if we cannot improve the fit of the models.

The six steps just described clearly can accommodate other classes of models

in step 1 and other optimizing object function in step 6. We have found that our

particular choices make the sequential process efficient.

3.6 Illustrative Example

The goal of this example is to show how sample size, design types, and design space

refinement affect the evaluation metric L∗. Given tight tolerance requirement, L∗ ≤ d,

we show layers of experiments are an effective and efficient approach for building a

statistical model. For comparison, we present the performance of single layer approach

first.

3.6.1 Single layer experiments

A single variable cubic function, y(x) = f(x)+ε = 2x3−32x+1+ε, is considered where

ε ∼ N(0, 10). f(x) is used to represent a computation-intensive design function. In

the designated design space [−3, 5], L∗ is computed based upon approximation by 2nd

order polynomial regression model. Note that there is difference between fitting model

and true model. This represents model misspecification that occasionally occurs in
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physical experiments.

For comparison, we use two different types of designs: I-optimal design and min-

imax design with various sample sizes and investigate γ(ξ) and |T − ŷ(x)| separately

as shown in Figure 18(a) and 18(b).
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(a) The value of γ(ξ) according to different sam-

ple size
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Minimax Design

(b) The value of minx |T − ŷ(x)| according to

different sample size

Figure 18: The impact of sample size on evaluation metric

Figure 18(a) depicts the impact of sample size and design types on γ(ξ). Generally,

γ(ξ) decreases as sample size increases and an optimal design, as it stands, provides

accurate inference performance. However, there is no difference in minx |T − ŷ(x)|

between two different types of designs. Although the minimax design explores design

space more evenly, it does not help on minx |T − ŷ(x)| under the environment of

model misspecification. In reality, model misspecification is inevitable, because the

true model is unknown and sometimes too complex. Once model is misspecified, large

sample size and design strategy hardly make fitted model to reach the target (T ).
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3.6.2 Two Layers of Experiments

The concept of the layer of experiments is illustrated with the same function from pre-

vious example. The difference from previous example is that lower layer experiments

are conducted sequentially after upper layer experiment.
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Figure 19: Two-layer experiments: Four samples (red dots) are collected by space-

filling design at the upper layer. Six samples (blue dots) are collected by optimal

design at the lower layer.

Based upon a minimax design, four experimental points are obtained in the upper

layer [−3, 5] to approximate the “unknown curve, as illustrated in Figure 19. If one

applies a second-order model to carry out the approximation, the first fitted function

using the least square method will be ŷu(x) = −20.42− 10.11x+ 6.06x2.

To improve the approximation accuracy, we apply the proposed method to conduct

an experiment in the lower layer. The lower layer, new design space, is determined at

[−1.8, 2.5]. At the lower layer I-optimal design with nlower = 6 is use to fitting 2nd-

order polynomial model. (see blue dash line in Figure 19) The second fitted model,

f(x) = −8.91− 22.80x+ 4.98x2, performs much better in terms of evaluation metric
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(L∗).
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Figure 20: The performance of two-layers of experiments in L∗

Now, we compare a single layer of experiment and two layers of experiments in

terms of evaluation metric (L∗). For a single layer experiment, we use the same

setting as illustrated in Figure 18. For two layers of experiments, two different types

of designs are used: minimax design for upper layer and I-optimal design for lower

layer. For simplicity, half of samples are collected in the upper layer and the other

half samples are used in the lower layer. In both layers, approximation models are

2nd order polynomial regression model and I-optimal designs are constructed based

on the model structure. Evaluation metric L∗ is computed by the average of ten

experiments for each experimental setting.

Figure 20 shows the results of comparison. From sample size 10 to 100, a single

layer experiment and two layers of experiments are compared in terms of evaluation

metric. A single layer experiment cannot reduce model accuracy more even with a
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large sample size after it reaches a certain level of accuracy. On the other hand, layers

of experiments provide a way to reduce evaluation metric dramatically with same

sample size. The experiment in the lower layer alleviates the negative effect of model

misspecification. For example, with sample size n = 16, two layers of experiments

results in L∗ = 9.67, while a single layer experiment gives 21.16 for I-optimal design

and 30.45 for minimax design, respectively.

Next, we carry out same experiments except the sequence of design type to see the

performance of recommended sequence: space-filling design for upper layer and opti-

mal design for lower layer. Table 2 shows the L∗ values for two-layers of experiments

in four different sequence of design type: 1)space-filling / optimal, 2)space-filling /

space-filling, 3)optimal / optimal, and 4)optimal / space-filling.

Table 2: The performance of two layer experiments in different design strategy

Sample size (upper/lower) Design (upper/lower) L∗

n=16 (8/8) space-filling / optimal 9.67

n=24 (12/12) space-filling / optimal 6.09

n=40 (20/20) space-filling / optimal 3.62

n=16 (8/8) space-filling / space-filling 11.96

n=24 (12/12) space-filling / space-filling 6.79

n=40 (20/20) space-filling / space-filling 4.95

n=16 (8/8) optimal / optimal 50.30

n=24 (12/12) optimal / optimal 33.82

n=40 (20/20) optimal / optimal 32.19

n=16 (8/8) optimal / space-filling 43.83

n=24 (12/12) optimal /space-filling 31.89

n=40 (20/20) optimal / space-filling 28.61

The results in Table 2 confirm that space-filling / optimal combination is better

than the others. Upper layer requires a design having space-filling properties to find
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the design space of lower layer accurately. The inefficiency from optimal designs in the

upper layer is mainly caused by wrong subregion decision. However, how to allocate

sample size into upper layer and lower layer is remained issue. Proper design sequence

in more than two layers of experiments will be covered in the next chapter.

3.7 Conclusion

To find optimal process conditions of complicated response with large uncertainty, it

is crucial to select design points near the optimal regions. If one fails to have design

points around optimal regions, there is no hope to find appropriate optimal conditions.

However, the given resources are limited and so one should allocate enough resources

to important regions. We proposed a systematic procedure to give more weight of

using given resources on the optimal regions. We called it ‘Layers of Experiments’.

‘Layers of Experiments’ is motivated from nano-manufacturing where the yield

function of nano-fabrication is very complex and requires very tight tolerance re-

quirement. So, commonly used experiment schemes do not work for this situation.

Layers of Experiments zoom into subregions and conduct sequential experiments. By

redefine design space, we can relax the model complexity in the subregions and put

more resource in the focused subregions. However, this approach contains a risk of

missing process optima.

Illustrative examples show layers of experiments are able to satisfy tight tolerance

requirement, which is hardly made by a single layer experiment. Also, we recommend

space-filling design for upper layer and optimal design for lower layer in two layers of

experiments. A design strategy for multi-layer experiments is developed in the next

chapter.
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CHAPTER IV

COMBINED OPTIMAL AND SPACE-FILLING DESIGNS

4.1 Introduction

Statistical modeling for nano-fabrication process to achieve consistently good perfor-

mance has become increasingly important [25]. So, we need to build a statistical

model that meets tight tolerance requirement near the process optimum (or a given

target (T )). To check whether the requirement is met or not, we developed an eval-

uation metric in the previous chapter as

L(x) = max {|T − (ŷ(x) + CI(x))| , |T − (ŷ(x)− CI(x))|} .

In this chapter, a new design criterion for the evaluation metric is of interest. To meet

the evaluation metric, the new design criterion should satisfy two characteristics:

accuracy in statistical inference and design space exploration. The design should

be able to construct statistical models as accurately as possible. The component

of confidence interval in the evaluation metric quantifies the accuracy of the fitted

model. On the other hand, the design should be spread out as evenly as possible

over the design space to explore the process optimum. The difference between T and

ŷ(x) can be reduced by design space exploration. However, those two characteristics

conflict with each other.

To help understand the conflict between these two characteristics, Figure 21 shows

the two different types of designs and their results in data collection and modeling.

Both designs are used to build 2nd order polynomial regression models to fit unknown

true physical process. We assume that there exists a mismatch between the true

process and the statistical models. Figure 21(a) illustrates six D-optimal design

points under the 2nd order models. Red dots on the plot represent collected field
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(b) Model-free space-filling design (minimax de-
sign)

Figure 21: Accuracy in statistical inference vs. design space exploration. Black solid
lines are true physical process, while red dash lines are fitted statistical models

data. Optimal designs usually allow replication to improve statistical inference as

shown in Figure 21(a). On the other hand, Figure 21(b) shows a minimax design

and corresponding collected field data. Contrasting with Figure 21(a), the design

points are spread out evenly over the design space to reduce the chance of missing

the process optimum. For the given target T = −48.27, the values of minx |T − ŷ(x)|

are 30.79 for the D-optimal design and 16.60 for the minimax design. The values

of the average confidence interval (CI) over the design space are 6.60 for the D-

optimal design and 31.20 for the minimax design. We see that there is a trade-off

between the two characteristics. Here, the D-optimal design and the minimax design

are representative model-based optimal design and model-free space-filling design,

respectively.

Much of the statistical work on process optimization has concerned the use of

optimal design under the underlying models. With limited resources, optimal designs

provide optimal accuracy in statistical inference (e.g. parameter estimation of the
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models). Model-based optimal design approaches are generally used in physical ex-

periments where model validation is needed due to random errors and where a high

level of model accuracy is required. However, optimal designs have been criticized

because they need to assume underlying models and so they are quite sensitive to

their assumptions [4, 5].

On the other hand, space-filling designs such as minimax designs [18], Latin hyper-

cube designs [27] and uniform designs [12] do not need underlying model assumptions.

They are adequate for exploring complex response surfaces with a minimum number

of runs. However, the space-filling designs have limitations. They are hardly used for

model validation because they do not allow replications and so the fitted model may

be more erroneous and less accurate than optimal designs. Since each of them has its

own advantages and limitations, it is natural consider a combination of those design

criteria.

Table 3: Combined design criteria

Model-based Model-free Example

One after the other

Maximin distance,
Latin Hypercube

Morris and Mitchell
(1995) [29]

Latin Hypercube,
pairwise correla-
tions

Owen (1994) [31]

Orthogonal Latin Hypercube Tang (1993) [36]
Adjusted Optimal Uniform Fang and Wang (1994)

[13]
Combinations D-optimality Latin Hypercube Goel et al. (2008) [15]
Constrained or D , T-optimality Atkinson (2008) [2]
Compound Latin Hypercube,

pairwise correla-
tions

Joseph and Hung
(2008) [20]

We propose a combined design criterion between model-based optimal design and

model-free space-filling design. Combined criteria are discussed in several papers (see

Table 3). There are three types of procedures for combining design criteria. The first

type is that the two design criteria are applied one after the other. That is, designs
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are first restricted by the first criterion and then a second criterion is applied to this

in order to achieve additional desirable properties. For example, maximin distance

designs may be applied within the class of Latin Hypercube Designs (LHDs) [29] (see

more examples in Table 3).

The second type is that a part of the total runs are collected by one design criterion

and the rest of runs by another design criterion. This type of combined design is called

a combination design [15]. For example, a total of 100 runs consists of 50 runs by

model-based D-optimal design and the remaining 50 runs by geometry-based LHS

criterion.

The third type is to combine two design criteria using constrained optimal designs

[7] or compound optimal designs [22, 23]. For example, the DT-optimality criterion

[2] combines the T -optimality criterion and D-optimality criterion, where the interest

lies in model discriminating and estimating the parameters. This type of combined

design creates a new design criterion and the criterion has both characteristics of

original criteria partially. Generally, this type of combined design introduces a tuning

parameter to control these characteristics.

We combine design criteria using constraint or compound optimization technique.

Recall that our purpose is to build accurate statistical models for approximation

of a complicated true function with a few runs. For this purpose, the third type of

combined design is more appropriate because each design point in this type of designs

has both characteristics, thereby requiring smaller run size than the other types. The

contribution of this chapter is to propose a new design criterion combining model-

based design criteria and model-free design criteria in a constraint or compound

manner. To the best of our knowledge, we could not find an attempt to this in

the literature. The proposed design is useful when the fitted statistical model is

required to have both characteristics: accuracy in statistical inference and design

space exploration. The weight of these two characteristics can be easily controlled
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compared to existing combined designs.

This chapter is organized as follows. In Section 2, performance measures for

evaluating the goodness of optimal design and a minimax criterion are described.

In Section 3, we propose a multi-objective criterion combining the two performance

measures. In Section 4, we introduce the algorithm for generating combined designs.

Some property investigations and several examples are presented in Section 5 and 6.

4.2 Performance Measures

One considers optimum designs to achieve the most precise statistical inference pos-

sible for an underlying model. We assume that an observation yi(xi) may be written

yi = fT (xi)θ + εi, i = 1, 2, . . . , N, (4.2.1)

where the xi’s are elements of a compact design space, X , f is continuous on X , and

the εi’s are uncorrelated random variables with mean zero and variance σ2. Letting

fT (xi) denote the (q × 1) ith row of a matrix X, Eq. (4.2.1) may be rewritten

y = Xθ + e.

A design ξN is an N -point exact design if ξN is a probability measure on X and

NξN(x) is a nonnegative integer for every x ∈ X . Denote the space of N -point exact

designs on X by ΩN
X For approximate designs, the restriction that ξ(x) be a multiple

of 1/N is relaxed. Thus, an approximated design is simply an element of the space

ΩX , of probability measures on X .

Exact and approximate D-optimal designs maximize the determinant of the in-

formation matrix,

M(ξ) =

∫
X

f(x)fT (x)dξ(x). (4.2.2)

If |M(ξ)| ̸= 0, the dispersion matrix, M−1(ξ). Note that for an N -point exact design

ξN ,

M(ξN) = XTX/N.
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Hence, if we set NξN = ξ[N ], we have

M(ξ[N ]) = XTX.

The variance of the least squares predictor ŷ(x) is given by

σ2(x) = σ2x′M
−1
(ξ[N ])x = σ2v(x, ξ[N ]),

where x′ = [f1, . . . , fp] is a vector of p real valued functions of x based on the model

terms and v(x, ξ) is defined to be the variance function of the design ξ.

Now we will discuss a performance measure based on the geometric distance. Let

ξ be the design of N points, x ∈ Rk represent an arbitrary point in the feasible region,

and ρ(x, ξ) the distance between x and its closest design point, i.e.

ρ(x, ξ) = min
xi∈ξ

τ(x, xi).

A minimax design ξ∗ of N points then has a distance

ρ∗ = min
ξ⊂Ω

max
x∈Ω

ρ(x, ξ), (4.2.3)

or

ξ∗ = min
ξ⊂Ω

ρ(ξ),

where ρ(ξ) is defined by maxx∈Ω ρ(x, ξ) and Ω denote a set of sites.

The distance ρ∗ is referred to as the minimal covering radius of the design. For

example, with ordinary distance operating on [0, 1] minimax design places N points

at elements of

{(2i− 1)/2N, i = 1, . . . , N}

while ρ∗ = 1/2N . In case of 7 congruent l2-circles the minimal radius needed to cover

the unit square is ρ∗ ≈ 0.2743 (see Figure 22 ). In this figure the diamonds(⋄) depict

remote sites, i.e. points in the square that are at distance ρ from the design.
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Figure 22: Two-dimensional l2-minimax design of 7 points on the design space [0, 1]×

[0, 1]; ρ∗ ≈ 0.2743. (from [18])

The design that minimizes ρ will be a minimax design. In the next section we

propose a new criterion which combines the performance measures in (4.2.2) and

(4.2.3).

4.3 Combined Design

Our objective is to find a combined design that minimizes both |M−1(ξ)| and ρ(ξ). A

common approach in multi-objective optimization is to optimize a weighted average of

all the objective functions [20]. The objective function of a weighted average method

is

κ|M−1(ξ)|+ (1− κ)ρ(ξ), (4.3.1)

where κ is pre-specified positive weights. In the weighted-sum method, all the ob-

jectives are aggregated into a single objective by using a weight vector. Although

the weighted-sum method is simple and easy to use, there are three major problems.

Firstly, it is not easy to choose appropriate values of κ, because the objectives have

different scale. Secondly, the performance of the method is heavily dependent on

the shape of the feasible region so that it cannot find all the optimal solutions for

problems that have a non-convex feasible region. Thirdly, κ values may not linear in
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the value of ρ(ξ) or M(ξ). For example, even though κ = 0 means |M−1(ξ)| = 1,

κ = 0.8 does not necessarily mean |M−1(ξ)| = 0.8 in the weighted sum method. ρ(ξ)

could be 0.7, 0.6, or any other value depending on the relationship between κ and the

objectives. Without exact knowledge of the relationship, it is difficult to control the

characteristic of the combined design through κ.

A procedure that overcomes some of the problems of the weighted sum technique

is the ϵ-constraint method. This involves maximizing a primary objective, |M(ξ)|,

and expressing the other objective in the form of inequality constraints as

max
ξ

|M(ξ)| (4.3.2)

s.t. ρ(ξ)s ≤ κ,

where ρ(ξ)s is the performance measure of ρ(ξ) that scaled into [0, 1]. We choose

|M(ξ)| as a primary objective, because it facilitates to construct the combined design

using existing optimal design construction algorithm. In other words, we find D-

optimal design under the restricted design space by inequality constraints. We will call

a optimal design from the objective function (4.3.2) with pre-specified κ κ-CbindD.

To compute ρ(ξ)s, we need lower bound (ρL) and upper bound (ρU) of ρ(ξ). ρL

is known by definition of minimax design and ρU is ρ(ξ†) where ξ† is the D-optimal

design as the results of Proposition 4. Denote ρ(ξ)s by (ρ(ξ)− ρL)/(ρU − ρL). Then,

ρ(ξ)s ∈ [0, 1] has the same range as κ ∈ [0, 1].

Proposition 4. Suppose that ξ† is a D-optimal design and Ω = {ξ : |M(ξ)| ≤

|M(ξ†)|}. Then, the upper bound of ρ(ξ) is ρ(ξ†). That is,

min
ξ∈Ω

ρ(ξ) ≤ ρ(ξ†).

Proof. The objective function (4.3.1) can be rewritten by

min
ξ

ρ(ξ)

s.t. |M(ξ)| ≥ c,
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Consider two designs: ξA and ξB, which |M(ξA)| ≤ |M(ξB)|. Let ΩA = {ξ : |M(ξ)| ≥

|M(ξA)|} and ΩB = {ξ : |M(ξ)| ≥ |M(ξB)|}. Then

min
ξ∈ΩA

ρ(ξ) ≤ min
ξ∈ΩB

ρ(ξ),

because ΩA ⊂ ΩB. Hence, for |M(ξ)| ≤ |M(ξ†)|,

min
ξ∈Ω

ρ(ξ) ≤ ρ(ξ†),

where ξ† is a D-optimal design and Ω = {ξ : |M(ξ)| ≤ |M(ξ†)|}.

4.4 Algorithm

An exchange algorithm is used to find designs from a discrete candidate list of possible

design points. Exchange algorithms are the most common techniques to construct

optimal designs. All exchange algorithms share the same basic operations. Points

in the current design are exchanged with those in a candidate list of possible design

points. Exchanges are accepted when they improve objective function; otherwise the

exchange is rejected. If constraints are exist in the objective function, exchanges

are made only for the candidates that satisfy the constraints. According to Fedorov

algorithm [14], during the ith iteration, a point xj is deleted and another point x in

a design space X (x ∈ X ) is added in such a way that the resulting increase in the

determinant is maximal.

|M(ξi+1[N ])|
|M(ξi[N ])|

= 1 +∆i(xj, x)

where

∆i(xj, x) = [1 + v(x, ξi[N ])]× [v(x, ξxi [N + 1])− v(xj, ξ
x
i [N + 1])].

ξxi [N + 1] is used to denote the design ξi[N ] augmented by the point x.

Cook and Nachtsheim modified Fedorov exchange algorithm [8]. Each iteration

corresponds to an iteration of the Fedorov algorithm. However, in the modified one,
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an iteration s is broken down into N stages, one for each support point in the design

at the start of the iteration. At stage i, the first argument of the delta function is

fixed at the ith support point, the point x∗ ∈ X is found such that

max
x∈X

∆s(xi, x) = ∆s(xi, x
∗),

and then xi is exchanged for x∗ (i.e., the design is updated). The support points

may be randomly ordered at the start of an iteration. A single iteration consists of

a number of exchanges equal to the number of support points at the start of the

iteration. Since

max
x∈X

∆s(xi, x) ≥ ∆s(xi, xi) = 0,

an exchange will never result in a decrease in the determinant of the information

matrix.

4.5 Property Investigation

Table 4: Six-points combined designs under 2nd order polynomial model structure
with different values of κ

κ 0.0 0.2 0.4 0.6 0.8 1.0
0.08 0.00 0.01 0.02 0.00 0.00
0.25 0.18 0.30 0.38 0.42 0.49
0.42 0.41 0.49 1.00 0.00 0.00
0.58 0.59 1.00 0.00 1.00 1.00
0.75 0.82 0.71 0.91 0.97 0.51
0.92 1.00 0.00 0.55 0.55 1.00

We construct combined designs using the proposed new criterion and the exchange

algorithm. The exchange algorithm is used to find designs from a discrete candidate

list of 100 grid points over a design space [0, 1]. Table 4 shows six-points combined

designs on [0, 1] with different values of κ. The first column is a minimax design

and the last column is a D-optimal design under the 2nd order polynomial model.

60



From 2nd column to 5th column represent combined designs between minimax design

criteria and D-optimal design criteria under the 2nd order polynomial models.
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(b) The values of ρ(ξ)s (Black solid line) andM(ξ)s (red dash

line) in the six combined designs.

Figure 23: Combined designs
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Figure 23(a) depicts six combined designs in Table 4. Six data points at the

bottom line are the minimax design, while six data points at the upper line are the

D-optimal design. The proposed combined design criterion and the algorithm find

designs that have both properties of minimax and D-optimal designs and the weights

of two properties changes depending on the κ value. Figure 23(b) shows the values of

ρ(ξ)s and scaledM(ξ) (M(ξ)s) of the six combined designs. Note that ρ(ξ)s has linear

relationship with κ. This is because ρ(ξ)s is restricted by κ value in the secondary

objective of (4.2.3) when the design is constructed. This is one of aforementioned

advantages of ϵ-constraint method over weighted sum method.

Now, the properties of combined designs with several different values of κ are

investigated and they are compared with the popularly used space-filling designs and

optimal designs. Combined designs of various κ are compared with uniform design,

LHD, and D-optimal designs in terms of ρ(ξ) and M(ξ).
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Figure 24: Comparison among combined designs and commonly used experimental

designs in minimax criteria and D-optimal criteria. D2, D3, and D4 represents D-

optimal criteria under 2nd, 3rd, 4th polynomial regression model, respectively.
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As shown in Figure 24(a) and Figure 24(b), space-filling designs such as uniform

design and LHD show better results than optimal designs in minimax criteria(ρ(ξ)).

On the other hand, D2(D-optimal design under 2nd order polynomial regression

model) is the best in terms of D-optimal criteria under 2nd order model structure.

Note that D2 is actually equivalent to combined design with κ = 1 by definition of

combined design. However, D3 and D4 performs similar but both poorer than D2.

This is because optimal designs are sensitive underlying model misspecification. That

is, wrong model assumption makes optimal designs ineffective.

Let us compare those designs with other criteria: discrepancy and average inter-

point distance. The centered L2-discrepancy criterion (see [12]) is a design criterion

to construct the uniform design, whereas the average interpoint distance can be used

to construct LHD design (see [29]) by maximizing

ϕp =

(
2

n(n− 1)

∑
1≤i<j≤n

1

τ(xi, xj)p

) 1
p

, (4.5.1)

where τ(xi, xj) denote the Euclidean distance between two points xi and xj of a design

ξ = {x1, x2, . . . , xn}. When p is sufficiently large, it can be shown that the r criterion

is just equivalent to the maximin criterion [18]. In our study, we choose a value p = 15

and use ϕ15.
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better)

Figure 25: Comparison among combined designs and commonly used experimental

designs in discrepancy criteria and average interpoint distances

With respect to discrepancy criteria as shown in Figure 25(a), it is similar to

the comparison using minimax criteria. As expected, uniform design indicates the

smallest value in discrepancy criteria. 0.4-CbindD and 0.6-CbindD show similar value

in discrepancy criteria.

Figure 25(b) indicates that the average interpoint distance is not appropriate

criterion for comparison optimal designs because the optimal designs allow replication

of design points. As you see in Eq. (4.5.1), replication makes the criteria infinity.
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Figure 26: Comparison among combined designs and commonly used experimental

designs in D-optimal criteria

The weakness of combined designs is that they are also dependent to underlying

model assumption, because optimal design criteria part in combined design criteria

requires the information of model structure. So, the performance of combined designs

are poor in terms of D-optimal criteria with different order from the one used in

design construction (see Figure 26). If correct model is 3rd order (Figure 26(a))

or 4th order (Figure 26(b)) polynomial model, the performance of designs assuming

incorrect model may be poor. D2 and D4 in Figure 26(a) and D2 and D3 in Figure

26(b) are the case.

However, combined designs are less sensitive to model misspecification than pure

optimal designs, because of the space-filling criteria part in combined design criteria.

0.2-CbindD and 0.4-CbindD outperform both D-optimal design (κ = 1) and mini-

max design (κ = 0), which means combined designs may be robust against model

misspecification because they have both space-filling properties and optimal design

properties. Also, strength of the proposed combined designs is the two properties can
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be controlled by κ value.

4.6 Conclusion

We employed a combined design criterion: one from optimal design criteria and one

from space-filling design criteria. In another words, it is combination between model-

based design and model-free design. One for precise statistical inference, while the

other one is for exploration over the design space. A threshold (κ) in the combined

design criteria controls the weight between the two criteria.

We showed that combined designs have properties between optimal designs and

space-filling designs and they are robust against model misspecification. Moreover,

combined designs perform better than space-filling designs or optimal designs where

partial information about underlying model is available.

The combined design can be used in the layers of experiments. That is, as layers go

further, the combined design criterion moves from space-filling criterion to optimal

criterion as more information accumulates. The threshold of the combined design

should adaptive to model uncertainty of each layer. Thus, as layers go further, the

combined design criterion moves from space-filling criterion to optimal criterion. We

will study the adaptiveness of combined design criteria in the next chapter.

66



CHAPTER V

ADAPTIVE COMBINED DESIGNS WITH

ENGINEERING MODELS

5.1 Introduction

Statistical models are commonly used in quality improvement studies. Since such

models are basically data-driven models, they tend to perform poorly when predic-

tions are made far away from the observed data points. Moreover, the experimental

data required for estimating the statistical models can be expensive.

On the other hand, engineering models are developed based on the engineer-

ing/physical laws governing the process, which include analytical models and finite

element models. However, engineering models have limitations in that predictions

derived from engineering models are often not accurate. This is because engineering

models are developed based on several simplifying assumptions, which may not hold

true in practice.

As reviewed in Section 2, various formulations are available for constructing an up-

date model based on the original engineering model ym(x). Without loss of generality,

we use one typical engineering model updating formulation

ym′(x) = ym(x) + ω(x) + e, (5.1.1)

where, x = {x1, x2, ..., xn} are n controllable input variables, e is an unobservable

output variable, also assumed random, to capture the experimental uncertainty as-

sociated with a model output. ω(x) represent the engineering model bias, which is

unknown.

Let y(x) be the observations (field data) from physical experiments in the layer

R, x ∈ R, and ys(x) be the output of a statistical model. The proposed approach
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models the relationships among the observation from physical experiments, y(x), the

engineering model output ym(x), and the statistical model output ys(x) via

y(x) = ys(x) + ϵ = ym(x) + ω(x) + e, (5.1.2)

where ϵ is the experimental error of the observation from physical experiments in the

layer. Engineering models derived using the underlying physics of the process do not

always match satisfactorily with reality.

The bias function ω(x) is used to capture the model systematic bias, but not

intended to account for the experimental uncertainty. ω(x) could be parameter-

ized in various ways, for example, with a regression model ω(x;β) parameterized

by βω0, βω1, . . . , βωp. Here the bias function ω(x;β) is treated to be a deterministic

function that does not contribute to the model output uncertainty.

Find β Minimizing SSE =
N∑
i=1

wie
2
i =

N∑
i=1

wi[y(xi)− ym(xi)− ω(xi;β)]
2, (5.1.3)

where xi = [xi1, . . . , xip]
T (i = 1, . . . , N) are sample points. wi (i = 1, . . . , N) are the

weights for different experimental observations reflecting the quality of experimental

data, β = [βω0, βω1, . . . , βωp]
T are unknown parameters to be estimated.

Once ω(xi;β) is estimated using field data by (5.1.3), we can update engineering

model by (5.1.1). Let us call ym′(x) statistically updated engineering model or adjusted

engineering model.

Statistical models are useful when engineering models can be quite complex and

expensive to compute. Furthermore, statistical models can be underlying models of

most of model-based designs and more appropriate prediction, control, and optimiza-

tion in many cases. Therefore, we want to build an accurate statistical model using

field data as well as statistically updated engineering model. Here, we call this kind of

statistical models engineering adjusted statistical model.

The contribution of this chapter is to present an adaptive combined design to build

the engineering adjusted statistical model. In engineering model updating methods,

68



finding appropriate designs have not been main issue because updating methods focus

bias-correction. So, space-filling designs such as Latin hypercube design or uniform

designs are used, because design points should be spread out over the design space

as evenly as possible to reduce ω(x) efficiently. However, to build the engineering

adjusted statistical model, the field data update engineering model as well as estimate

the statistical model ys(x) due to limited resources, as shown in Eq. (5.3.4). Those

two characteristics: design space exploration and accuracy in statistical inference are

conflict with each other.

Another contribution is to combine information from various layers in Layers of

Experiments. With limited resource, efficient design collection scheme is important.

We modify the design criteria of combined designs in order to utilize all information

from various layers.

Following the introduction, in Section 2, we review literature in engineering model

updating methods. In Section 3, we propose two methodologies: determining adaptive

parameter (κ) for adaptive combined designs and combining information from various

layers for layers of experiments. In Section 4, the proposed methodology is evaluated

using illustrative examples.

5.2 Literature Review: Engineering model updating meth-
ods

There are two main approaches to update engineering models. Model bias-correction

approaches and model calibration approaches.

5.2.1 Model bias-correction approaches

Bias-correction is useful when accuracy improvement cannot be accomplished by cal-

ibrating model parameters [11, 17]. Bias-correction approach captures the potential

model error due to model misspecification [21]. There are various formulations of

bias-correction in the literature. In the Bayesian bias-correction model proposed by
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Wang et al. [38], a plain additive bias-correction model is formulated as

y(x) = ym(x) + ω(x) + ε, (5.2.1)

where the bias function ω(x) is a direct measure of the difference between the engi-

neering model ym(x) and the physical process y(x). The bias function ω(x) is assumed

to be a Gaussian Process model.

In addition to Eq. (5.2.1), a bias correction approach may employ a combination

of multiplicative bias and additive bias, as shown in the following formulation [32],

y(x) = ν(x)ym(x) + ω(x) + ε, (5.2.2)

where ν(x) is modeled as a simple linear regression model w.r.t. x, ε is assumed to

be a zero-mean Gaussian random variable. The scaling function ν(x) in Eq. (5.2.2)

brings more flexibility to the constant adjustment parameter ν used in Kennedy and

OHagan [21]. The regression coefficients of ν(x) can be estimated by the Maximum

Likelihood Estimation (MLE) method [32].

One inherent limitation of the bias-correction method is that it assumes all in-

puts (x) of both the engineering model (ym(x)) and the physical process (y(x)) are

observable and controllable. In practice, some of the model input parameters cannot

be directly observed and measured in the physical experiments. This limitation can

be addressed using the model calibration approach.

5.2.2 Model calibration approaches

With a typical model calibration approach, the inputs of a computer model are divided

into controllable inputs (x) and uncontrollable parameters (θ) that are assumed to be

fixed over the experiment. Note that it is θ that are to be calibrated. A engineering

model for the given input vector (x,θ) is denoted as ym(x,θ), while the physical

process is denoted to be y(x) as a function of controllable inputs x only.
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5.2.2.1 Deterministic calibration approach

A conventional way to carry out a deterministic parameter calibration is to formulate

the problem through the following equation

y(x) = ym(x,θ) + e,

where e is the residual between the prediction from the calibrated engineering model

ym(x,θ) and the experimental observation y(x). The optimal values of the calibration

parameters θ are found by minimizing the (weighted) sum of the squared error (SSE)

between the model predictions and the physical experiments [24], i.e.,

Find β Minimizing SSE =
N∑
i=1

wie
2
i =

N∑
i=1

wi[y(x)− ym(x,θ)]
2

where xi = [xi1, xi2, ..., xik]
T (i = 1, 2, . . . , N) are sample points, wi (i = 1, 2, . . . , N)

are the weights for different experimental observations reflecting the quality of experi-

mental data, θ = [θ1, θ2, ..., θm]
T are unknown physical constants, and k is the number

of input variables. Deterministic calibration approaches are generally plausible and

easy to apply, but they cannot account for uncertainties in both engineering model

simulation and physical experimentation.

5.2.2.2 Non-deterministic Bayesian calibration approach

Non-deterministic parameter calibration is also called calibration under uncertainty

(CUU) [37]. Kennedy and OHagan [21] first developed a Bayesian approach to si-

multaneously calibrate a engineering model and characterize the potential bias (dis-

crepancy) between the model output and the physical experiments. Their method is

based on the following relation,

y(x) = ν · ym(x,θ) + ω(x) + ε, (5.2.3)

where ν is an unknown regression parameter (an adjustment parameter), ω(x) is a

bias (discrepancy) function assumed to be the realization of a Gaussian Process, ε
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is the experimental error assumed to be a zero-mean Gaussian random variable. In

essence, the formulation shown in Eq. (5.2.3) is a combination of both parameter

calibration and bias-correction. Several variants and applications of Kennedy and

OHagans approach [21] exist in the literature.

5.3 Methodology

5.3.1 Determining adaptive parameter (κ)

Layers of Experiments (LoE) are multi-stage experiments, each stage of whose has

different size of design space called a layer. Generally, the size of layer gets smaller se-

quentially to carry out experiments in more interested region in terms of experimental

goal.

Lower

Middle

Upper Optimal+Space-F

Optimal+Space-F

Optimal+Space-F

Figure 27: The concept of adaptive design in three layers of experiments

LoE employs combined designs for efficient data collection. That is, as layers

move to more focused local region, combined designs have the properties of optimal

designs. Figure 27 illustrates the concept of combined design in the LoE. The weight

between optimal design criteria and space-filling design criteria changes over layers.

That is, it is adaptive to data collected in the previous layer.

Adaptive design has been studied much mainly in clinical research. There are

many different types of adaptiveness (see [10], and literature cited therein), but we

restrict our attention about adaptiveness to the modification in design features in
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combined designs.

The value of κ plays a role to control weight between optimal design and space-

filling design in combined design criteria. The combined design is developed to be

adaptive to model uncertainty through the value of κ. Thus, the value of κ depends

on the model uncertainty in a certain design space. Since uncertainty measurement

is proposed in Eq. (3.3.5),

L(x) = max {|T − (ŷ(x) + CI(x))| , |T − (ŷ(x)− CI(x))|} ,

the problem is now to link it to κ value.

There are two conditions for κ. First, the value of κ should be between [0, 1].

Second, as defined in a combined design criteria, κ = 0 makes it a pure space-filling

criterion while it becomes a pure optimal criterion when κ = 1. Hence, the combined

design has more space-filling property as κ is close to zero and more optimal property

as κ is close to one.

For each layer, we can compute L∗
k, k = 1, . . . , nl. L

∗
k is defined by

L∗
k ≡ Lk(x

∗),

where x∗ = argminx ŷk(x) and ŷk(x) is a fitted model in the kth layer.

We conduct experiments in the sequentially zoomed-in design space until the

evaluation metric meets tight tolerance requirement. Then, evaluation metric, L∗
k, in

the kth layer should be less than the one of previous layer and greater than the one

of next layer.

L∗
k−1 < L∗

k < L∗
k+1 (5.3.1)

As more information is gathered, the amount of uncertainty should decrease. If not,

there is no reason to collect more data to conduct additional experiments.

To re-scale the evaluation metric into [0, 1], we need upper bound and lower bound

of L∗. According to Eq. (5.3.1), the evaluation metric in the initial layer is the largest
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one and the smallest one should be less than or equal to d. For simplicity, assume

that L∗
nl
− d = 0 in the lowest (last) layer. Then κk in the kth layer can be computed

as

κk = 1−
max{0, L∗

k−1 − d}
L∗

0 − d
, (5.3.2)

where L∗
0 is the evaluation metric with simple mean model y(x) = µ + ε. In this

way, the value of κ reflects the uncertainty in a certain layer, and also satisfies two

conditions above.

5.3.2 Combining information from various layers

Combined design developed in the previous chapter is also appropriate to utilize

information from various layers. Once subsequent design space (RB) is decided, data

collected in the previous layers (RA) should be used to construct the design in the

subsequent layer (RB). How to reflect given information into a subsequent design is

an important issue for efficiency in design of experiments.

Figure 28: The concept of combining information from various layers. Open blue

circles composite a design ξA in the RA. Closed blue circles are design points of ξA

in the RB.

Suppose that a design ξA is given in the previous layer (RA), which means ξA ⊂ RA.

Data are collected on ξA and RB is determined based on the collected data. Assume
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that a set SAB is not an empty set, where

SAB = {x : (x ∈ ξA) ∩ (x ⊂ RB)} ≠ ∅.

closed blue circles indicate the elements of SAB in Figure 28. Now, we present the

way to combine information forD-optimal design criteria and minimax design criteria,

respectively.

Given SAB, D-optimal designs in the RB maximizes the determinant of the mod-

ified information matrix,

M(ξ) =

∫
RB

f(x)fT (x)dξ(x) +

∫
x∈SAB

f(x)fT (x)dξ(x). (5.3.3)

Similarly, a minimax design given SAB in the RB is

ξ∗ = min
ξ⊂RB

max
x∈RB

ρ(x, ξ ∪ ξA), (5.3.4)

where

ρ(x, ξ ∪ ξA) = min
xi∈{ξ∪ξA}

τ(x, xi)

Eq. (5.3.4) is modified from Eq. (4.2.3) in that ξ is replaced by ξ ∪ ξA. Given

information ξA is added in minimax design criteria. Note that we use ξ ∪ ξA instead

of ξ ∪ SAB. This is because some data points just outside of RB are also useful for

space-filling design. For example, in Figure 28, the left-upper corner of RB has been

already explored much by a data point located in the just outside of left-upper corner

of RB. So, in space-filling point of view, left-upper corner of RB may be less attractive

as the location of new design point.

Thus, we can easily modify optimal criteria and space-filling criteria as Eq. (5.3.3)

and (5.3.4) and construct combined criteria as we proposed in the previous chapter.

The proposed modified design criteria present a flexible way to combine information

from various layers regardless from upper layer (zoom-in procedure) or lower layer

(zoom-out procedure). Also, this method is applicable in the irregular design space.
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5.4 Layers of Experiments with Engineering Models

Step 1) Postulate a Tentative Statistical Model: Low-order polynomial models are

used.

y(x) =

p∑
i=1

γifi(x) + ε, (5.4.1)

where ε ∼ N(0, σ2).

Step 2) Plan an Experiment and Collect the Data: With computed κ from upper

layer, find design ξ using proposed combined design criteria in Eq. (4.3.2). Collect

y(ξ) from physical experiments at the design points of ξ. An updated engineering

model is given from upper layer and a simulator can compute ym(ξ) at ξ where

physical experiments are conducted.

Step 3) Update Engineering Model: Estimate the bias function ω(ξ;β) by

Find β Minimizing SSE =
∑
i

[y(ξi)− ym(ξi)− ω(ξi;β)]
2 ,

Once ω(xi;β) is estimated, update engineering model by (5.1.1).

Step 4) Use the Data and the Updated Engineering Model to build the Engi-

neering Adjusted Statistical Model: We estimate the parameters in the model (5.4.1)

and obtain ŷ. Both the observations (field data) from physical experiments and the

adjusted engineering model outputs are obtained and they are valuable information

to build an accurate statistical model. In addition to the field data xf , collect grid

points xm from updated ŷm to build an engineering adjusted statistical model (ŷs).

For ease to apply design criteria, a statistical model is restricted to polynomial re-

gression models. We recommend the order of polynomial regression model does not

exceed the order which the size of xf allows.

Step 5) Check the Accuracy of Prediction: The accuracy of the fitted model ŷ can

be measured by evaluation metric (Eq. (3.3.5)). If prediction is sufficiently accurate

for the required tolerance, go to step 7; otherwise proceed to step 6. At this step, the

threshold, κ, in combined criteria (Eq.(4.3.2)) is updated for lower layer.
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Step 6) Choose a Subregion for the Next Experiment: An optimization routine

can be used to find the center of the new subregion, while the sensitivity analysis can

be used for choosing new limits for the new subregion. Then repeat steps 1 to 5, with

data drawn from the new subregion.

Step 7) Find Optimal Process Conditions: Statistical model in the lowest layer

is accurate enough to meet tight tolerance requirement. Also, the lowest layer is

expected to include process optimum. Using fitted statistical mode, we find optimal

process conditions.

Figure 29 summarizes the layers of experiments procedures.

77



Figure 29: Layers of Experiments
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5.5 Illustrative Example

The purpose of illustrative examples is to justify the proposed methodology, Layers

of Experiments (LoE), by showing its performance when the true response is complex

and engineering models are biased. Example 1 is about combined design criteria. We

show that the threshold, κ, varies depending on engineering model bias.

5.5.1 Example 1

The concept of the layer of experiments can be illustrated through a single variable

cubic function, f(x) = 2x3−32x+1+σ, where σ ∼ N(0, 5). f(x) is used to represent

a computation-intensive design function. In the fist layer design space [−3, 5], six

experimental points (a combined design with κ = 0) are obtained to approximate the

unknown curve with 2nd order polynomial regression model, as illustrated in Figure

30(b). However, its evaluation metric (L∗
1 = 69.01) is much larger than tolerance

requirement (d = 10). Thus, we decided to conduct six additional experiments in the

second layer. The zoom-in procedure is applied, which is introduced in the previous

chapter. The new design space is now between the points [−0.63, 3.76].

Using Eq. (5.3.2) we can find κ2 = 0.215 for the new layer,

κk = 1−
max{0, L∗

k−1 − d}
L∗

0 − d
,

where L∗
0 is the evaluation metric with simple mean model y(x) = µ+ ε as illustrated

in Figure 30(a).
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(a) L∗
0 is the evaluation metric with simple

mean model y(x) = µ+ ε
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(b) First layer: A combined design with κ = 0

and a new design space (−0.63, 3.76) for second

layer

Figure 30: Six points of combined design with κ = 0 (a minimax design) in the first

layer [−3, 5].

Then, we applies the combined design with κ2 = 0.215 again over the reduced

design space [−0.63, 3.76], and produces a second fitted model shown in Figure 31(a).

This second fitted model yields a much better evaluation metric (L∗
2 = 19.65), but it

is not enough close to the tight tolerance requirement (d = 10). By continuing this

process, we zoom-in again for third layer [1.58, 2.58] and compute κ3 = 0.872.
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(a) Second layer: A combined design with κ =

0.215 and a new design space (1.58, 2.58) for

third layer
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(b) Third layer: A combined design with κ =

0.872 and finally meet the tolerance requirement

Figure 31: Six points of combined designs in the second layer and third layer.

In the third layer, the evaluation metric (L∗
3 = 8.77 < 10) finally meets tolerance

requirement. So, we stop further experiments and find the optimal condition from

the final accurate statistical model.
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Figure 32: κ value decision and corresponding evaluation metric in the three layers

of experiments

Figure 32(a) illustrates how the values of κ changes over three layers. As we defined

before, κ value measures the amount of uncertainty existing in a certain layer. As κ

value moves from 0 to 1, corresponding combined designs changes from space-filling

to optimal designs, and evaluation metric gets improved as shown in Figure 32(b).

5.5.2 Example 2

Suppose that a true response function f(x) is a nonlinear complicated function of

x. Observations (y) of physical experiments from the true response function may be

modeled by

y = f(x) + σ,

where σ ∼ N(0, 5). In the first layer design space [−18, 28], six experimental points (a

combined design with κ = 0) are obtained as a space-filling design (minimax design

in this example).

ξ1 = {−14.17,−6.50, 1.17, 8.83, 16.50, 24.17}
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The design is used to approximate the unknown true function

f(x) = 10−4
(
−x(x− 1)(x− 5)(x− 7)(x− 10) + 200(x− 5)3 + 10−4 exp(x)

)
with 2nd order polynomial regression model, as illustrated in Figure 33. However, its

evaluation metric (L∗
1 = 82.53) is much larger than tolerance requirement (d = 10).

Thus, we decided to conduct six additional experiments in the zoomed-in layer. The

proposed zoom-in procedure is applied and the it yields L2 = [−11.86, 15.94]. Since

the set S12 defined in the previous section is not an empty set,

S12 = {x : (x ∈ ξ1) ∩ (x ⊂ L2)} = {−6.50, 1.17, 8.83} ̸= ∅,

we are able to utilize the collected data in previous layer to construct a combined

design in a next layer.

−10 0 10 20

0
50

10
0

15
0

20
0

x

y

Figure 33: First layer: A combined design with κ = 0 and a new design space

(−11.86, 15.94) for the second layer. Red dashed line indicates statistical model ap-

proximation using 2nd order polynomial regression model. Black solid line represents

the true model. Three points ( (−6.50,−8.90), (1.17,−6.92), (8.83, 6.06) ) are useful

in the second layer
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Then, with S12 and κ2 = 0.476 obtained from Eq. (5.3.2), we apply the combined

design again over the zoomed-in design space L2 = [−11.86, 15.94], and approximate

the unknown f(x) with 3rd order polynomial regression model as shown in Figure

34(a). Note that the three points in S12 affect the combined design in the L2. The

combined design with κ2,

ξ2 = {−11.86,−1.47,−11.58, 3.59, 13.98, 15.943},

is designed by the method of combining information from various layers explained in

the previous section.

This fitted model yields a much better evaluation metric (L∗
2 = 17.40), but it

is not enough close to the tight tolerance requirement (d = 10). So, we decide to

conduct next layer experiments.
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(a) Second layer: A combined design with κ = 0.476

and a new design space (−9.12, 0.88) for third layer.

Red dashed line indicates statistical model approxi-

mation using 3rd order polynomial regression model.
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(b) Third layer: A combined design with κ = 0.91 and

finally meet the tolerance requirement. Red dashed

line indicates statistical model approximation using

4th order polynomial regression model.

Figure 34: Six points of combined designs in the second layer and third layer.
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By continuing this process, we zoom-in again for third layer L3 = [−9.12, 0.88]

and compute κ3 = 0.91. With S23 = {−1.47,−6.50} and κ3, the combined design in

the L3 is

ξ3 = {−8.91,−4.067,−9.12,−3.97, 0.88, 0.88}.

In the third layer, the evaluation metric from approximated 4th order polynomial

regression model (see Figure 34(b)) finally meets tolerance requirement,

L∗
3 = 9.99 < 10

Therefore, we stop further experiments and find the optimal condition from the final

accurate statistical model.
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Figure 35: κ value decision and corresponding evaluation metric in the three layers

of experiments

Figure 35(a) illustrates how the values of κ changes over three layers. As we defined

before, κ value measures the amount of uncertainty existing in a certain layer. As κ

value moves from 0 to 1, corresponding combined designs changes from space-filling

to optimal designs, and evaluation metric gets improved as shown in Figure 35(b).
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5.5.3 Example 3

In this example, we show the procedure to build engineering adjusted statistical

model. Six field data are obtained from physical experiments in the design space

[−15, 24] and engineering model (ym(x)) is given as shown in Figure 36. We follow the

procedure proposed in [19] to check whether the given engineering model is adequate

or not. After testing the adequacy of the engineering model, it confirms that the

engineering model is not good. So, we proceed to adjust engineering model with field

data.
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Figure 36: Adjusted engineering model

Using the constant adjustment model (5.1.1) for y(x)− ym(x) on ym(x)− ym, we

obtain β̂0 = −10.693 and β̂1 = 0.076. Hereafter, the adjusted engineering model is

ŷm = ym(x)− 10.693 + 0.076(ym(x)− ȳm), (5.5.1)

A plot of the adjusted engineering model in shown in Figure 36, which clearly
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shows great improvement compare to the original engineering model. That is, orig-

inal engineering model is adjusted by field data to reduce mismatch between the

engineering model and field data. To quantify the performance, we can carry out the

model inadequacy test as before.
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(a) Statistical model relies only on field data for

estimation
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(b) Engineering adjusted statistical model uti-

lizes field data as well as simulated data from

adjusted engineering model

Figure 37: Statistical model vs. Engineering adjusted statistical model

Without the engineering model, statistical model estimation relies only on col-

lected field data. The quality of the statistical model depends on the number of

data and its quality. If physical experiments for the field data are time-consuming or

expensive, we cannot expect qualified statistical model (see Figure 37(a)).

Now, we combine information from adjusted engineering model to estimate sta-

tistical model. In addition to six field data, six different type of data are collected

from the adjusted engineering model as shown in Figure 37(b). Dash line in Figure

37(b) depicts statistical model estimated by both field data and the adjusted engi-

neering model. We call it the engineering adjusted statistical model. Compared to

the dash line in Figure 37(a), the engineering adjusted statistical model is clearly
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more accurate than the one without using information from engineering model.

5.6 Conclusion

In the process optimization point of view, it is crucial to select design points near the

optimal regions. If one fails to have design points around optimal regions, there is no

hope to find appropriate optimal conditions. However, the given resources are limited

and so one should allocate enough resources to important regions. We proposed a

systematic procedure to give more weight of using given resources on the optimal

regions. We called it ‘Layers of Experiments’. As layers go further, the uncertainty

of underlying model gets decreased and the region of interest gets restricted. We

employed combined design criteria: one from optimal design criteria and one from

minimum energy criteria in the Layers of Experiments.

The engineering adjusted statistical model is a statistical model based on both field

data and updated engineering model in layers of experiments. To build an accurate

engineering adjusted statistical model, both characteristics (design space exploration

and accuracy in statistical inference) are required. So, combined designs are appro-

priate for the engineering adjusted statistical model. The adaptive parameter (κ) in

the combined design criteria controls the weight between the two criteria. The value

of κ is adaptive to model uncertainty of each layer. Thus, as layers go further, the

combined design criterion moves from space-filling criterion to optimal criterion.

We proposed the method to determine adaptive parameters sequentially based

on uncertainty at each layer. However, the proposed method to determine κ is an

practical guideline, rather than rigorous way from a statistical perspective. Future

study on the property of adaptive parameter is needed. Also modified combined

design criteria are presented to improve its efficiency by combining information from

various layers.
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[22] Läuter, E., “Experimental planning in a class of models,” Mathematische Op-
erationsforschung und Statistik, vol. 5, pp. 673–708, 1974.
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